Answer:
1201 lbs
Explanation:
Given that in mammals, the weight of the heart is approximately 0.5% of the total body weight.
Let the weight of the heart of a mammal be H
And the weight of the total body be B
The linear model that can gives the heart weight in terms of the total body weight will be:
H = 0.005B
B.) To find the weight of the heart of a whale whose weight is 2.402 × 105 lbs, substitute the whole weight in the formula.
H = 0.005 × 2.402 × 10^5
H = 1201 lbs
Therefore, the weight of the heart of the whale is 1201 lbs
Answer: Hello!
Lewis is travelling at 165 mph, which means miles per hour, this says that he does 165 miles in one hour.
We want to know how much time takes to cover 16 miles.
this can be calculated as the quotient of the distance and the velocity; this is:

if we want to write this in minutes, then:
we know that one hour has 60 minutes, then 0.096 hours has:
0.096h*60mins/1h = 5.8 minutes.
then Lewis needs 5.8 minutes in order to cover 16 miles if his speed is 156 miles per hour.
Answer:
static coefficient = 0,203 & kinetic coefficient = 0,14
Explanation:
There are two (2) conditions, when the desk is about to move and when the desk is moving. In the attachements you can see the two free body diagram for each condition.
In the first condition, there is no movement and the force is 12 N, in the image we can see the total forces are equal to 0 and by the definition of the friction force we can get the static friction coefficient.
In the second condition there is movement in the direction of the force which is equal to 8 N, again by the definition of the friction force we can get the kinetic friction coefficient. Since the desk is moving with constant velocity there is not acceleration.
The answer for the question is bandwagon. Hope it helped :)