The energy stored in a capacitor is given by:

where
U is the energy
C is the capacitance
V is the potential difference
The capacitor in this problem has capacitance

So if we re-arrange the previous equation, we can calculate the potential V that should be applied to the capacitor to store U=1.0 J of energy on it:
The temperature of an air parcel and the kinetic energy of an air parcel are directly related. this means that as the temperature of the air parcel increases, the kinetic energy increases.
<h3>
What is temperature?</h3>
Temperature is the measure of degree of hotness or coldness of a body.
Temperature is also the measure of the average kinetic energy of a system.
When the heat is applied to body, its temperature increases as the body gains heat.
Thus, the temperature of an air parcel and the kinetic energy of an air parcel are directly related. this means that as the temperature of the air parcel increases, the kinetic energy increases.
Learn more about temperature here: brainly.com/question/25677592
#SPJ1
Explanation:
Power of electric kettle, P = 1 kW
Voltage, V = 220 V
(a) Electric power is given by the formula as follows :

R is resistance

(b) When connected to a 220 V supply, it takes 3 minutes for the water in the kettle to reach boiling point.
Energy supplied is given by :

P is power, 
