Answer:
-3/5
Step-by-step exp:
given in the file. Hope it helps.
Answer:
Step-by-step explanation:
cylinder's height=3×(diameter of sphere)=3×6=18 cm
radius of cylinder=3 cm
volume of cylinder=π r²h=π(3)²×18=162 π cm³
volume of sphere=4/3 π(3)³=36 π cm³
reqd. empty space=162 π-3×36π=54 πcm³
Let
. The tangent plane to the surface at (0, 0, 8) is

The gradient is

so the tangent plane's equation is

The normal vector to the plane at (0, 0, 8) is the same as the gradient of the surface at this point, (1, 1, 1). We can get all points along the line containing this vector by scaling the vector by
, then ensure it passes through (0, 0, 8) by translating the line so that it does. Then the line has parametric equation

or
,
, and
.
(See the attached plot; the given surface is orange, (0, 0, 8) is the black point, the tangent plane is blue, and the red line is the normal at this point)
Answer:

Step-by-step explanation:
Answer:

Step-by-step explanation:
The question to be solved is the following :
Suppose that a and b are any n-vectors. Show that we can always find a scalar γ so that (a − γb) ⊥ b, and that γ is unique if
. Recall that given two vectors a,b a⊥ b if and only if
where
is the dot product defined in
. Suposse that
. We want to find γ such that
. Given that the dot product can be distributed and that it is linear, the following equation is obtained

Recall that
are both real numbers, so by solving the value of γ, we get that

By construction, this γ is unique if
, since if there was a
such that
, then
