The given trinomial can be factored using the factorization method.
x² - 2x - 24
The middle term should be written is such a way that the sum of two terms is equal to the middle one and their product should be equal to the product of first and third term. So the above expression can be written as
= x² -6x + 4x - 24
= x(x-6) + 4(x-6)
= (x-6)(x+4)
Thus, (x-6)(x+4) is the factored form of the polynomial.
So the correct answer is option B
Voy a responder en el mismo idioma en que está la pregunta.
1) Venta con ganancia
Precio de venta 60 soles.
Ganancia = 20% del costo => costo + 0,20 * costo = precio
=> costo (1 + 0,20) = precio = 60 soles
=> costo (1,20) = 60 soles => costo = 60 soles / 1,20 = 50 soles
2) Venta con pérdida del 20%
Pérdida = 20% del costo
=> costo - precio = 20% * costo => costo - 0,20*costo = precio
=> costo ( 1 - 0,20) = 60 soles => costo * 0,80 = 60 soles
=> costo = 60 soles / 0,80 = 75 soles
3) Costo total = 50 soles + 75 soles = 125 soles
4) Ganancia total = valor total de venta - costo total
Ganancia total = 2 * 60 soles + 125 soles = 120 soles - 125 soles = - 5 soles.
El signo negativo significa que al final se perdió 5 soles en la operación.
B) because i think its that answer
Answer:
<h2>14mph</h2>
Step-by-step explanation:
Given the gas mileage for a certain vehicle modeled by the equation m=−0.05x²+3.5x−49 where x is the speed of the vehicle in mph. In order to determine the speed(s) at which the car gets 9 mpg, we will substitute the value of m = 9 into the modeled equation and calculate x as shown;
m = −0.05x²+3.5x−49
when m= 9
9 = −0.05x²+3.5x−49
−0.05x²+3.5x−49 = 9
0.05x²-3.5x+49 = -9
Multiplying through by 100
5x²+350x−4900 = 900
Dividing through by 5;
x²+70x−980 = 180
x²+70x−980 - 180 = 0
x²+70x−1160 = 0
Using the general formula to get x;
a = 1, b = 70, c = -1160
x = -70±√70²-4(1)(-1160)/2
x = -70±√4900+4640)/2
x = -70±(√4900+4640)/2
x = -70±√9540/2
x = -70±97.7/2
x = -70+97.7/2
x = 27.7/2
x = 13.85mph
x ≈ 14 mph
Hence, the speed(s) at which the car gets 9 mpg to the nearest mph is 14mph