1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivanshal [37]
3 years ago
14

Determine whether the quantitative variable is discrete or continuous. Weight of a rock

Mathematics
1 answer:
NemiM [27]3 years ago
5 0

Answer:

Continuous.

Step-by-step explanation:

In Mathematics, a random variable can be defined as any variable whose values are determined by the outcome of a random experiment.

Basically, random variables are classified into two (2) main categories and these are;

1. Discrete random variable: a discrete random variable is a data set in which the number of possible values are either finite or countable. For instance, the value of a fair die, number of sweets in a jar, number of eggs in a crate etc.

2. Continuous random variable: a continuous random variable is a data set having infinitely many possible values and those values cannot be counted, meaning they are uncountable. Any quantity such as height, volume, weight, density, length, pressure, temperature, speed, distance, time are generally a continuous random variable.

Hence, the weight of a rock is continuous random variable because it has an infinite number of possible values such as 1kg, 20kg, 10kg, 50kg etc.

You might be interested in
Prove the following integration formula:
7nadin3 [17]

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms
  • Factoring

<u>Calculus</u>

  • Derivative 1:                  \frac{d}{dx} [e^u]=u'e^u
  • Integration Constant C
  • Integral 1:                      \int {e^x} \, dx = e^x + C
  • Integral 2:                     \int {sin(x)} \, dx = -cos(x) + C
  • Integral 3:                     \int {cos(x)} \, dx = sin(x) + C
  • Integral Rule 1:             \int {cf(x)} \, dx = c \int {f(x)} \, dx
  • Integration by Parts:    \int {u} \, dv = uv - \int {v} \, du
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Step-by-step Explanation:

<u>Step 1: Define Integral</u>

\int {e^{au}sin(bu)} \, du

<u>Step 2: Identify Variables Pt. 1</u>

<em>Using LIPET, we determine the variables for IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{-cos(bu)}{b}

<u>Step 3: Integrate Pt. 1</u>

  1. Integrate [IBP]:                                           \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} - \int ({ae^{au} \cdot \frac{-cos(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                                \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} \int ({e^{au}cos(bu)}) \, du

<u>Step 4: Identify Variables Pt. 2</u>

<em>Using LIPET, we determine the variables for the 2nd IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b}

<u>Step 5: Integrate Pt. 2</u>

  1. Integrate [IBP]:                                                  \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \int ({ae^{au} \cdot \frac{sin(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                    \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du

<u>Step 6: Integrate Pt. 3</u>

  1. Integrate [Alg - Back substitute]:     \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]
  2. [Integral - Alg] Distribute Brackets:          \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2} - \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du
  3. [Integral - Alg] Isolate Original Terms:     \int {e^{au}sin(bu)} \, du + \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du= \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  4. [Integral - Alg] Rewrite:                                (\frac{a^2}{b^2} +1)\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  5. [Integral - Alg] Isolate Original:                                    \int {e^{au}sin(bu)} \, du = \frac{\frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +1}
  6. [Integral - Alg] Rewrite Fraction:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{-be^{au}cos(bu)}{b^2} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +\frac{b^2}{b^2} }
  7. [Integral - Alg] Combine Like Terms:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{ae^{au}sin(bu)-be^{au}cos(bu)}{b^2} }{\frac{a^2+b^2}{b^2} }
  8. [Integral - Alg] Divide:                                  \int {e^{au}sin(bu)} \, du = \frac{ae^{au}sin(bu) - be^{au}cos(bu)}{b^2} \cdot \frac{b^2}{a^2 + b^2}
  9. [Integral - Alg] Multiply:                               \int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]
  10. [Integral - Alg] Factor:                                 \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]
  11. [Integral] Integration Constant:                     \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C

And we have proved the integration formula!

6 0
2 years ago
Read 2 more answers
Which expression can be used to check the answer to 56+(-14)=n?
Delvig [45]

Answer: n = 42

Step-by-step explanation:

56 - 14 = 42

If + and - are right next to each other, the + cancels out.

7 0
3 years ago
Read 2 more answers
Plzzzz Help what is the equation? ​
jenyasd209 [6]
Okie so I iwoeo oeoeo to church ⛪️
6 0
2 years ago
A family of two adults and three children went to a water park. Admission to the water park costs $18 per person. Nora used the
horsena [70]

Answer: distributive property

Step-by-step explanation:

5(18)=2(18)+3(18)

18(2+3) = 2* 18+ 3*18

18*5 =  2* 18+ 3*18

5 0
3 years ago
Read 2 more answers
F(x)=2x² + 12, what is f(3)<br><br> 3<br> 12<br> 18<br> 30
Natali [406]
The answer to the question

8 0
3 years ago
Other questions:
  • The sum of two numbers is 7 and the diffrence is 5
    13·2 answers
  • Jordan is three years older than four times Lily's age. The sum of their age is 68. How old is Jordan?
    15·1 answer
  • Cecil Green sells golf hats. He knows that most people will not pay more than $20 for a golf hat. Cecil needs a 40% markup on co
    15·1 answer
  • What is the average of the following numbers 66.9,5.6,70.1​
    8·1 answer
  • A GE lightbulb is supposed to last for 1,200 hours. In fact, light bulbs of this type last only 1,185 hours with a standard devi
    9·1 answer
  • According to a survey conducted by an environmental organization, the probability that an eligible voter cares strongly about en
    9·1 answer
  • Cada CD cuesta $ 5 y usted tiene $ 40 para gastar en CD. Escribe una desigualdad para la cantidad posible de CD que podrías comp
    13·1 answer
  • James has 883 feet of rope. There are 13 teams of hikers.
    14·1 answer
  • A student in a foreign language program learns 15 new words each week. Which graph best represents the relationship between x, t
    8·1 answer
  • How do you solve 5(r+9)−2(1−r)=1<br> need quickly
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!