Answer:
22 is 40% of what number?
55
32 is 20% of what number?
160
Step-by-step explanation:
If 22 is 40% of a number you can divide 22 by 40 to find what one % would be.
22/40=.55
To find what the whole number is we can multiply that by 100, since we want 100% of the number we have is only 1%.
.55x100=55
Check:
40% of 55= 55x.4=22
Repeat this for the next problem.
32/20=1.6
1.6x100=160
Check:
160x.2=32
Answer:
n = 6 +
or n = 6 - 
Step-by-step explanation:
We can solve this equation using the quadratic formula OR Completing the Square method.
n² + 14 = 12n
rearrange : n² - 12n + 14 = 0
here a= 1 , b = -12, c = 14
the quadratic formula says: x = - b/ (2a) + root(b^2 - 4ac) / (2a)
or x = - b/ (2a) - root(b^2 - 4ac) / (2a)
x = - (-12)/ (2) + root((-12)^2 - 4*14) / (2)
x = 6 + root (144 - 56) / 2
x = 6 + root(88)/2
x = 6 + root(4*22) / 2
x = 6 + 2*root(22)/2
x = 6 + root(22) = 6 + 
so x =6 +
or x = 6 - 
In this case x = n
n = 6 +
or n = 6 - 
Given the points P(-2, 7), Q(6, 8) and R(-1, -3), we find the quadratic equation of the form

as follows:
Step 1:
We check to make sure that no pair of points is colinear (i.e. lie on the same line) by making that the slopes of the combinations of the line are not equal.
Slope of PQ =

Slope of PR =

Slope of QR =

Since, the slope of the lines are not equal, thus the points are not colinear nor parallel.
Step 2:
Substitute the x-values and the y-values of the given points into the quadratic equation formular to have three system of equations as follows:

Step 3:
We solve the system of equations as follows:
![\left[\begin{array}{ccccc}4&-2&1&|&7\\36&6&1&|&8\\1&-1&1&|&-3\end{array}\right] \ \ \ R_1\leftrightarrow R_3 \\ \\ \left[\begin{array}{ccccc}1&-1&1&|&-3\\36&6&1&|&8\\4&-2&1&|&7\end{array}\right] \ \ \ {{-36R_1+R_2\rightarrow R_2} \atop {-4R_1+R_3\rightarrow R_3}} \\ \\ \left[\begin{array}{ccccc}1&-1&1&|&-3\\0&42&-35&|&116\\0&2&-3&|&19\end{array}\right] \ \ \ R_2\leftrightarrow R_3](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D4%26-2%261%26%7C%267%5C%5C36%266%261%26%7C%268%5C%5C1%26-1%261%26%7C%26-3%5Cend%7Barray%7D%5Cright%5D%20%5C%20%5C%20%5C%20R_1%5Cleftrightarrow%20R_3%20%5C%5C%20%5C%5C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-1%261%26%7C%26-3%5C%5C36%266%261%26%7C%268%5C%5C4%26-2%261%26%7C%267%5Cend%7Barray%7D%5Cright%5D%20%5C%20%5C%20%5C%20%7B%7B-36R_1%2BR_2%5Crightarrow%20R_2%7D%20%5Catop%20%7B-4R_1%2BR_3%5Crightarrow%20R_3%7D%7D%20%5C%5C%20%20%5C%5C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-1%261%26%7C%26-3%5C%5C0%2642%26-35%26%7C%26116%5C%5C0%262%26-3%26%7C%2619%5Cend%7Barray%7D%5Cright%5D%20%5C%20%5C%20%5C%20R_2%5Cleftrightarrow%20R_3)
![\left[\begin{array}{ccccc}1&-1&1&|&-3\\0&2&-3&|&19\\0&42&-35&|&116\end{array}\right] \ \ \ \frac{1}{2} R_2\leftrightarrow R_2 \\ \\ \left[\begin{array}{ccccc}1&-1&1&|&-3\\0&1&\frac{-3}{2}&|&\frac{19}{2}\\0&42&-35&|&116\end{array}\right] \ \ \ {{R_1+R_2\rightarrow R_1} \atop {-42R_2+R_3\rightarrow R_3}} \\ \\ \left[\begin{array}{ccccc}1&0&\frac{-1}{2}&|&\frac{13}{2}\\0&1&\frac{-3}{2}&|&\frac{19}{2}\\0&0&28&|&-283\end{array}\right] \ \ \ \frac{1}{28} R_3\leftrightarrow R_3](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-1%261%26%7C%26-3%5C%5C0%262%26-3%26%7C%2619%5C%5C0%2642%26-35%26%7C%26116%5Cend%7Barray%7D%5Cright%5D%20%5C%20%5C%20%5C%20%20%5Cfrac%7B1%7D%7B2%7D%20R_2%5Cleftrightarrow%20R_2%20%5C%5C%20%20%5C%5C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%26-1%261%26%7C%26-3%5C%5C0%261%26%5Cfrac%7B-3%7D%7B2%7D%26%7C%26%5Cfrac%7B19%7D%7B2%7D%5C%5C0%2642%26-35%26%7C%26116%5Cend%7Barray%7D%5Cright%5D%20%5C%20%5C%20%5C%20%20%7B%7BR_1%2BR_2%5Crightarrow%20R_1%7D%20%5Catop%20%7B-42R_2%2BR_3%5Crightarrow%20R_3%7D%7D%20%5C%5C%20%20%5C%5C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%26%5Cfrac%7B-1%7D%7B2%7D%26%7C%26%5Cfrac%7B13%7D%7B2%7D%5C%5C0%261%26%5Cfrac%7B-3%7D%7B2%7D%26%7C%26%5Cfrac%7B19%7D%7B2%7D%5C%5C0%260%2628%26%7C%26-283%5Cend%7Barray%7D%5Cright%5D%20%5C%20%5C%20%5C%20%5Cfrac%7B1%7D%7B28%7D%20R_3%5Cleftrightarrow%20R_3)
![\left[\begin{array}{ccccc}1&0&\frac{-1}{2}&|&\frac{13}{2}\\0&1&\frac{-3}{2}&|&\frac{19}{2}\\0&0&1&|&\frac{-283}{28}\end{array}\right] \ \ \ {{\frac{1}{2}R_3+R_1\rightarrow R_1} \atop {\frac{3}{2}R_3+R_2\rightarrow R_2}} \\ \\ \left[\begin{array}{ccccc}1&0&0&|&\frac{81}{56}\\0&1&0&|&\frac{-317}{56}\\0&0&1&|&\frac{-283}{28}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%26%5Cfrac%7B-1%7D%7B2%7D%26%7C%26%5Cfrac%7B13%7D%7B2%7D%5C%5C0%261%26%5Cfrac%7B-3%7D%7B2%7D%26%7C%26%5Cfrac%7B19%7D%7B2%7D%5C%5C0%260%261%26%7C%26%5Cfrac%7B-283%7D%7B28%7D%5Cend%7Barray%7D%5Cright%5D%20%5C%20%5C%20%5C%20%7B%7B%5Cfrac%7B1%7D%7B2%7DR_3%2BR_1%5Crightarrow%20R_1%7D%20%5Catop%20%7B%5Cfrac%7B3%7D%7B2%7DR_3%2BR_2%5Crightarrow%20R_2%7D%7D%20%5C%5C%20%20%5C%5C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D1%260%260%26%7C%26%5Cfrac%7B81%7D%7B56%7D%5C%5C0%261%260%26%7C%26%5Cfrac%7B-317%7D%7B56%7D%5C%5C0%260%261%26%7C%26%5Cfrac%7B-283%7D%7B28%7D%5Cend%7Barray%7D%5Cright%5D)
Thus,

Therefore, the quadratic equation with the three given points is
The cost of the wood will be $1,003.05
<h3>Volume of a cylinder </h3>
The formula for calculating the volume of a cylinder is expressed as:

where:
- r is the radius
- h is the height
Given the following parameters
r = d/2 = 1.5/2 = 0.75ft
h = 45ft
Get the volume of the cylinder

If the <u>wood costs $12.62 per cubic foot,</u> hence the cost of the wood will be 79.4815 * 12.62 = $1,003.05
Learn more on volume of cylinder here: brainly.com/question/9554871
assuming they all quantitatively add up to 100,000 than
1,000 + 60,000 + x = 100,000
x = 39,000
Please specificy what quantity the three numbers should add up to.