To find the average rate of change of given function f(x) on a given interval (a,b):
Find f(b)-f(a), b-a, and then divide your result for f(b)-f(a) by your result for b-a:
f(b) - f(a)
------------
b-a
Here your function is f(x) = x^2 - 2x + 3. Substituting b=5 and a=-2,
f(5) = 5^2 -2(5)+3 =? and f(-2) = (-2)^2 - 2(-2) + 3 = ?
Calculate f(5) - [ f(-2) ]
------------------ using your results, above.
5 - [-2]
Your answer to this, if done correctly, is the "average rate of change of the function f(x) = x^2+2x+3 on the interval [-2,5]."
To exact form:
8/15
To decimal form:
0.53¬ repeating.
1. diginity
2.require
3.tuition
Answer:
1- 5xy³√5y
2- 2xy²∛3y²
Step-by-step explanation:
√125x²y^7=
√25*5x²y^6y
5xy³√5y
2) ∛24x³y^8=
∛2³*3x³y^8=
2xy²∛3y²
Answer:
sorry i do not know the answer to this one :(SORRY):
Step-by-step explanation: