Answer:
1) 36
b) 5
c) 3.0
Step-by-step explanation:
1) The recursive formula that defines the given sequence is

That means we keep adding 4 to the subsequent terms:
The sequence will be:
12,16,20,24,28,32,36,...
Therefore the seventh term is 36.
2) The sequence is recursively defined by;

This means, we have to keep subtracting 5 from the subsequent terms.
The sequence will be;
20,15,10,5,...
Therefore the fourth term is 5
3) The sequence is recursively defined by:
f(n+1)=f(n)+0.5
where f(1)=-1.5
This means that, the subsequent terms can be found by adding 0.5 to the previous terms.
The sequence will be:
-1.5,-1.0,-0.5,0,0.5,1,1.5,2.0,2.5,3.0,....
Therefore f(10)=3.0
Answer:
a) Suppose that F is ordered in ascending order:
. Then, the complement of F can be written as

which is the union of a finite number of open intervals, then
is an open set. Thus, F is a closed subset of the real numbers.
b) Take an arbitrary element of F, let us say
. Now, choose a real number
such that
there are not other element of F, because
is less that the minimum distance between
and its neighbors.
In case that
we only consider
, and if
we only consider
.
Then, all points of F are isolated.
Step-by-step explanation:
Answer:
The answer is below
Step-by-step explanation:
The linear model represents the height, f(x), of a water balloon thrown off the roof of a building over time, x, measured in seconds: A linear model with ordered pairs at 0, 60 and 2, 75 and 4, 75 and 6, 40 and 8, 20 and 10, 0 and 12, 0 and 14, 0. The x axis is labeled Time in seconds, and the y axis is labeled Height in feet. Part A: During what interval(s) of the domain is the water balloon's height increasing? (2 points) Part B: During what interval(s) of the domain is the water balloon's height staying the same? (2 points) Part C: During what interval(s) of the domain is the water balloon's height decreasing the fastest? Use complete sentences to support your answer. (3 points) Part D: Use the constraints of the real-world situation to predict the height of the water balloon at 16 seconds.
Answer:
Part A:
Between 0 and 2 seconds, the height of the balloon increases from 60 feet to 75 feet at a rate of 7.5 ft/s
Part B:
Between 2 and 4 seconds, the height stays constant at 75 feet.
Part C:
Between 4 and 6 seconds, the height of the balloon decreases from 75 feet to 40 feet at a rate of -17.5 ft/s
Between 6 and 8 seconds, the height of the balloon decreases from 40 feet to 20 feet at a rate of -10 ft/s
Between 8 and 10 seconds, the height of the balloon decreases from 20 feet to 0 feet at a rate of -10 ft/s
Hence it fastest decreasing rate is -17.5 ft/s which is between 4 to 6 seconds.
Part D:
From 10 seconds, the balloon is at the ground (0 feet), it continues to remain at 0 feet even at 16 seconds.
Answer:
the answers are a and d
Step-by-step explanation:
x+x+x=3x and you can't add a constant (2) to a variable(3x) so it would just be 3x+2
Solve for x by simplifying both sides of the equation , then isolating the variable
your answer is x=3/4