1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikdorinn [45]
3 years ago
11

Which line is perpendicular to the line 3y=5x-1

Mathematics
1 answer:
Ainat [17]3 years ago
3 0
For lines to be perpendicular their slopes have to be negative reciprocals of one another, mathematically...

m1*m2=-1...in this case:

y=5x/3=1/3  so the slope of the lines is 5/3 so any line that has a slope of:

5m/3=-1, 

m=-3/5 is perpendicular to the original line...
You might be interested in
2.7·6.2–9.3·1.2+6.2·9.3–1.2·2.7 not pemdas
antiseptic1488 [7]

<em></em>

<em>60</em>

<em>See steps</em>

<em>Step by Step Solution:</em>

<em>More Icon</em>

<em>Reformatting the input :</em>

<em>Changes made to your input should not affect the solution:</em>

<em />

<em>(1): "2.7" was replaced by "(27/10)". 8 more similar replacement(s)</em>

<em />

<em>STEP</em>

<em>1</em>

<em>:</em>

<em>            27</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>1</em>

<em>:</em>

<em>     27 62   93 12    62 93    12 27</em>

<em>  (((——•——)-(——•——))+(——•——))-(——•——)</em>

<em>     10 10   10 10    10 10    10 10</em>

<em>STEP</em>

<em>2</em>

<em>:</em>

<em>            6</em>

<em> Simplify   —</em>

<em>            5</em>

<em>Equation at the end of step</em>

<em>2</em>

<em>:</em>

<em>     27 62   93 12    62 93    6 27</em>

<em>  (((——•——)-(——•——))+(——•——))-(—•——)</em>

<em>     10 10   10 10    10 10    5 10</em>

<em>STEP</em>

<em>3</em>

<em>:</em>

<em>            93</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>3</em>

<em>:</em>

<em>     27 62   93 12    62 93   81</em>

<em>  (((——•——)-(——•——))+(——•——))-——</em>

<em>     10 10   10 10    10 10   25</em>

<em>STEP</em>

<em>4</em>

<em>:</em>

<em>            31</em>

<em> Simplify   ——</em>

<em>            5 </em>

<em>Equation at the end of step</em>

<em>4</em>

<em>:</em>

<em>     27 62   93 12    31 93   81</em>

<em>  (((——•——)-(——•——))+(——•——))-——</em>

<em>     10 10   10 10    5  10   25</em>

<em>STEP</em>

<em>5</em>

<em>:</em>

<em>            6</em>

<em> Simplify   —</em>

<em>            5</em>

<em>Equation at the end of step</em>

<em>5</em>

<em>:</em>

<em>     27 62   93 6   2883  81</em>

<em>  (((——•——)-(——•—))+————)-——</em>

<em>     10 10   10 5    50   25</em>

<em>STEP</em>

<em>6</em>

<em>:</em>

<em>            93</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>6</em>

<em>:</em>

<em>     27 62   93 6   2883  81</em>

<em>  (((——•——)-(——•—))+————)-——</em>

<em>     10 10   10 5    50   25</em>

<em>STEP</em>

<em>7</em>

<em>:</em>

<em>            31</em>

<em> Simplify   ——</em>

<em>            5 </em>

<em>Equation at the end of step</em>

<em>7</em>

<em>:</em>

<em>     27   31     279     2883     81</em>

<em>  (((—— • ——) -  ———) +  ————) -  ——</em>

<em>     10   5      25       50      25</em>

<em>STEP</em>

<em>8</em>

<em>:</em>

<em>            27</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>8</em>

<em>:</em>

<em>     27   31     279     2883     81</em>

<em>  (((—— • ——) -  ———) +  ————) -  ——</em>

<em>     10   5      25       50      25</em>

<em>STEP</em>

<em>9</em>

<em>:</em>

<em>Calculating the Least Common Multiple</em>

<em> 9.1    Find the Least Common Multiple</em>

<em />

<em>      The left denominator is :       50 </em>

<em />

<em>      The right denominator is :       25 </em>

<em />

<em>        Number of times each prime factor</em>

<em>        appears in the factorization of:</em>

<em> Prime </em>

<em> Factor   Left </em>

<em> Denominator   Right </em>

<em> Denominator   L.C.M = Max </em>

<em> {Left,Right} </em>

<em>2 1 0 1</em>

<em>5 2 2 2</em>

<em> Product of all </em>

<em> Prime Factors  50 25 50</em>

<em />

<em>      Least Common Multiple:</em>

<em>      50 </em>

<em />

<em>Calculating Multipliers :</em>

<em> 9.2    Calculate multipliers for the two fractions</em>

<em />

<em />

<em>    Denote the Least Common Multiple by  L.C.M </em>

<em>    Denote the Left Multiplier by  Left_M </em>

<em>    Denote the Right Multiplier by  Right_M </em>

<em>    Denote the Left Deniminator by  L_Deno </em>

<em>    Denote the Right Multiplier by  R_Deno </em>

<em />

<em>   Left_M = L.C.M / L_Deno = 1</em>

<em />

<em>   Right_M = L.C.M / R_Deno = 2</em>

<em />

<em />

<em>Making Equivalent Fractions :</em>

<em> 9.3      Rewrite the two fractions into equivalent fractions</em>

<em />

<em>Two fractions are called equivalent if they have the same numeric value.</em>

<em />

<em>For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.</em>

<em />

<em>To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.</em>

<em />

<em>   L. Mult. • L. Num.      837</em>

<em>   ——————————————————  =   ———</em>

<em>         L.C.M             50 </em>

<em />

<em>   R. Mult. • R. Num.      279 • 2</em>

<em>   ——————————————————  =   ———————</em>

<em>         L.C.M               50   </em>

<em>Adding fractions that have a common denominator :</em>

<em> 9.4       Adding up the two equivalent fractions</em>

<em>Add the two equivalent fractions which now have a common denominator</em>

<em />

<em>Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:</em>

<em />

<em> 837 - (279 • 2)     279</em>

<em> ———————————————  =  ———</em>

<em>       50            50 </em>

<em>Equation at the end of step</em>

<em>9</em>

<em>:</em>

<em>   279    2883     81</em>

<em>  (——— +  ————) -  ——</em>

<em>   50      50      25</em>

<em>STEP</em>

<em>10</em>

<em>:</em>

<em>Adding fractions which have a common denominator</em>

<em> 10.1       Adding fractions which have a common denominator</em>

<em>Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:</em>

<em />

<em> 279 + 2883     1581</em>

<em> ——————————  =  ————</em>

<em>     50          25 </em>

<em>Equation at the end of step</em>

<em>10</em>

<em>:</em>

<em>  1581    81</em>

<em>  ———— -  ——</em>

<em> </em>  25     25

STEP

11

:

Adding fractions which have a common denominator

11.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

1581 - (81)     60

———————————  =  ——

    25          1

Final result :

 60

7 0
3 years ago
3/10 divided by 6/11
mylen [45]

Answer:

Hi, I love these types of questions. So, ima teach you how to find the answer. If your only looking for an answer, skip to the bottom. So, what your trying to find is the solution to 3/10 divided by 6/11. So, remember, copy, dot, flip.

Copy- Copy the equation- 3/10 6/11

Dot- Change the division sign to multiplication- 3/10 X 6/11

Flip- so, this is where it gets a bit tricky. You wanna flip the numerator and denominator on the second fraction- 3/10 X 11/6

now multiply across-

33/60

simplify

11/20

Your answer is 11/20

3 0
3 years ago
Yer has 2107 beads for making jewelry. If each necklace she makes needs 49 beads, how
9966 [12]

41 necklaces can be made using 2017 beads where 49 beads are used to make 1 necklace.

The total number of beads for making jewelry with Yer = 2017

Beads require to make 1 necklace = 49 beads

The number of necklaces that can be made using 2017 beads when 49 beads are required to make 1 necklace will be:

Number of necklace = 2017 / 49

Number of necklace = 41.16

That is 41 necklaces can be made using 2017 beads where 49 beads are used to make 1 necklace.

Therefore, 41 necklaces can be made using 2017 beads where 49 beads are used to make 1 necklace.

Learn more about Number here:

brainly.com/question/24644930

#SPJ9

5 0
2 years ago
Is x plus y equals 3, then 3 equals x plus y. what is the property
Oksanka [162]

Answer

associative property of addition.

7 0
4 years ago
Once again, Bob and John went to the candy store. Bob bought 5 pieces of fudge and 4 pieces of bubble gum for a total of $10.10.
Ket [755]

Answer:

The fudge is $1.3 and the bubble gum is $0.9

3 0
3 years ago
Read 2 more answers
Other questions:
  • Find the exact value of tan^-1 (-root 3/3)<br>answer in radians in terms of π
    7·1 answer
  • How do I do these 2 questions in the picture provided?
    14·1 answer
  • Evaluate the function.<br> f(x) = -3x2 – 20<br> Find f(-9)
    15·1 answer
  • Two angles are supplementary. One angle is 40° more than three times the other. Find the measure of each angle.
    8·2 answers
  • (x + 3)(x -4) simplify
    9·2 answers
  • I would really appreciate some help, please!
    7·2 answers
  • Please Anybody help Whoever answer I will give Brainliest no cap <br><br>Match the terms <br>​
    5·1 answer
  • PLSSSSSSSSSSSS HELP ME CORRECT ANSWER GETS BRAINLIEST
    10·2 answers
  • I just need help with number 36 pleasee
    6·1 answer
  • Write the integer from least to greatest. 4, 12, -12, -11
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!