Answer:
60
Step-by-step explanation:
<span>1) 2p = -2.
<span> 4p [ y - k ] = [ x - h) ]² --- > - 4 [ y + 5 ] = [ x + 5 ]²
2) </span></span><span>4p * (y - k) = (x - h)^2 </span>
<span>(h , k) is the vertex </span>
<span>The vertex is halfway between the focus and the directrix (when they're at their closest) </span>
<span>p is that distance </span>
<span>2 - 1 = 1 </span>
<span>4p = 1 </span>
<span>p = 1/4 </span>
<span>(1/4) * (y - k) = (x - h)^2 </span>
<span>y - k = 4 * (x - h)^2 </span>
<span>The vertex is at (6 , 3/2), since that's midway between (6 , 1) and (6 , 2) </span>
<span>y - 3/2 = 4 * (x - 6)^2 </span>
<span>y = (3/2) + 4 * (x - 6)^2
</span><span>
4) </span><span>f(x) = (-1/16)*(x²)
</span><span>
5) </span><span>f(x) = −1/4 x2 − x + 5</span><span>
</span>
Answer:
5π or 15.71 inches
Step-by-step explanation:
Length of an arc =
× 2πr
Where x is the angle and r is the radius
so
× 2 × π × 10
0.25 × 2 × π × 10
Arc length = 5π inches (answer in terms of π)
= 15.71 inches (answer in two decimal places)