Answer:
-11
Step-by-step explanation:
-5 minus 6 equals -11. Look up on Google
Answer:
3.84% of months would have a maximum temperature of 34 degrees or higher
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What percentage of months would have a maximum temperature of 34 degrees or higher?
This is 1 subtracted by the pvalue of Z when X = 34. So



has a pvalue of 0.9616
1 - 0.9616 = 0.0384
3.84% of months would have a maximum temperature of 34 degrees or higher
Step-by-step explanation:
Simple interest formula

Compound interest formula

a.

Simple interest is $125
b
. 
Compound interest is $125
c. the result for both a and b are the same
d.

the simple interest is $375
e
. ![A = 5000 (1 + \frac{0.025}{1})^{1*3}] \\A=5000(1.025)^3 \\A=5000(1.077)\\A= 5385](https://tex.z-dn.net/?f=A%20%3D%205000%20%281%20%2B%20%5Cfrac%7B0.025%7D%7B1%7D%29%5E%7B1%2A3%7D%5D%20%5C%5CA%3D5000%281.025%29%5E3%20%5C%5CA%3D5000%281.077%29%5C%5CA%3D%205385)
the compound interest is $385
f. the result compared, compound interest is $10 more than simple interest
g.

the simple interest is $600
h.
![A = 5000 (1 + \frac{0.02}{1})^{1*6}] \\A=5000(1.12)^6 \\A=5000(1.9738) \\A= 9869](https://tex.z-dn.net/?f=A%20%3D%205000%20%281%20%2B%20%5Cfrac%7B0.02%7D%7B1%7D%29%5E%7B1%2A6%7D%5D%20%5C%5CA%3D5000%281.12%29%5E6%20%5C%5CA%3D5000%281.9738%29%20%5C%5CA%3D%209869)
the compound interest is $4869
i. the result from g and h, h is over 8 times bigger than g.
j. interest compound annually is not the same as simple interest, only for the case of a and b seeing that it is for 1 year. but for 2years and above there is difference as seen in c to h