Answer:
Measure of angle 2 and angle 4 is 42°.
Step-by-step explanation:
From the figure attached,
m∠ABC = 42°
m(∠ABD) = 90°
m(∠ABD) = m(∠ABC) + m(∠DBC)
90° = 43° + m(∠DBC)
m(∠DBC) = 90 - 43 = 47°
Since ∠ABC ≅ ∠4 [Vertical angles]
m∠ABC = m∠4 = 42°
Since, m∠3 + m∠4 = 90° [Complimentary angles]
m∠3 + 42° = 90°
m∠3 = 90° - 42°
= 48°
Since, ∠5 ≅ ∠3 [Vertical angles]
m∠5 = m∠3 = 48°
m∠3 + m∠2 = 90° [given that m∠2 + m∠3 = 90°]
m∠2 + 48° = 90°
m∠2 = 90 - 48 = 42°
m∠3+ m∠4 = 90° [Since, ∠3 and ∠4 are the complimentary angles]
48° + m∠4 = 90°
m∠4 = 90 - 48 = 42°
Therefore, ∠2 and ∠4 measure 42°.
Answer:
on question #2, the answer is A.
Step-by-step explanation:
19-5 is 14.
<em>Hope this helps!</em>
Alright, so we'd use the combinations with repetition formula, so we choose from 4 schools to distribute to and distribute 8 blackboards. It's then
( 8+4-1)!/8!(4-1)!=11!/(3!*8!)=165
For at least one blackboard, we first distribute 1 to each school and then have 4 blackboards left, getting (4+4-1)!/4!(4-1)!=7!/(4!*3!)=35
Answer:
12 =x
20.78460969=y
Step-by-step explanation:
sin theta = opposite side / hypotenuse
sin 60 = y /24
Multiply each side by 24
24 sin 60 = y/24*24
24 sin 60 =y
20.78460969=y
cos theta = adjacent side / hypotenuse
cos 60 = x /24
Multiply each side by 24
24*cos 60 = x/24*24
24 cos 60=x
12 =x