Answer:
Ans= 9
See attached picture for clearer solution.
Explanation:
The net electrostatic force acting on charge A = 2/ 2 + 2 /(2) 2 − 2 /(3) 2 = 2 / 2 (1 + 1/4 – 1/9 ) = 41/36 2/2 .
The net electrostatic force acting on charge B = 2/2 + 2/(2)2 − 2/2 = 1/4 2/d2 .
The net electrostatic force acting on charge C = 2/2 + 2/(2)2 + 2/2 = 2/2 (1 + 1 4 + 1) = 9/4 2/2 .
The net electrostatic force acting on charge D = 2/2+ 2 /(2)2 + 2/(3)2 = 2 /2 (1 + 1/4 + 1/9 ) = 49/36 2/ 2 .
The ratio of the largest to the smallest net force = 9/4*2/2 / 1/4 2/2 . = 9
Answer:
The car manufacturers could increase bore of the cylinders, place the engine in the center or back of the car, add 1 to 2 turbochargers, and lower the center of gravity of the vehicle to increase traction.
Explanation:
Turbochargers would be recommended because they significantly increase both the torque of the engine as well as the amount of horses powering the car while also increasing original efficiency both with and without the additional power. Weight adjustment allows for lightweight vehicles with good traction. This is important to both keep control of the car under acceleration, but it also makes the vehicle more efficient due to the now sheddable unnecessary weight. A more obvious approach would be to increase the base horsepower and torque of the engine by increasing the bore of the cylinders and the weight of the pistons. This acts as an inertial lever, because the extra piston weight will drag the crankshaft faster. This could also be achieved by taking away piston weight, but this could be catastrophic should a piston slip.
A.) Each point on a wave front acts as a source of secondary waves.
<h2>Answer:</h2>
<h2>Explanation:</h2>
First, let's refer to the distance formula:
, where d is distance, v is velocity or speed and t is time.
Now, let's find the distance covered by each individual speed that the car had:
<h3>1. Speed 1.</h3>
In order to use the formula, we need to convert minutes into hours since the speed is given in km/h.
21.1 min/60= 0.35 h.
Now, apply the distance formula.
d=(0.35h)*(86.8km/h)= 30.38 km.
<h3>2. Speed 2.</h3>
Convert minutes to hours again and do the same calculations.
10.6min/60=0.18h
d=(0.18h)*(106km/h)= 19.08 km.
<h3>3. Speed 3.</h3>
36.5min/60= 0.61h
d=(0.61h)*(30.9km/h)= 18.85 km.
<h3>4. Obtain the total distance.</h3>
The total distance must be given by the addition of all individual distances traveled by the car on each speed:
Total distance= 30.38 km + 19.08 km + 18.85 km= 68.31 km.