The graph is attached.
We first graph the point where his catch reached the surface, (35, 0). Since it travels upward at a constant rate, the graph will be linear. We also need to know where it starts (what depth it is at when he begins reeling it in). We can use the formula d=rt as a template for our function. d would be distance (in our case, depth), r is the rate (speed) and t is the amount of time.
To find how far the catch had to travel to reach the surface, we set up our equation as:
d = 0.1(35)
This will tell us how much distance it traveled in 35 seconds. 0.1(35)=3.5, so the catch started 3.5m under water. It then travels up at 0.1 m per second.
Umm can you be more specific on your question so I can help you need to explain what you need help on
Answer: The answer is 750 cm
There's not much math work here, they just want you to eyeball the graph and give the closest grid point to where the two lines meet.
Let's translate the question.
Solution to the system
That's the x and y values where the two lines cross. That's because the meeting point is the value of x and y that satisfies both equations.
Approximation ... to the nearest integer values
Where two integer grid lines cross is called a lattice point. It's a point with integer coordinates. Our solution, the meet of these two lines, doesn't fall exactly on a lattice point. The nearest integer values means the closest lattice point to our intersection of lines.
Eyeballing the graph, I'd say (x,y)=(2,3) is the closest point.
Answer: (2,3) second choice