Answer:
A. b(w) = 80w +30
B. input: weeks; output: flowers that bloomed
C. 2830
Step-by-step explanation:
<h3>Part A:</h3>
For f(s) = 2s +30, and s(w) = 40w, the composite function f(s(w)) is ...
b(w) = f(s(w)) = 2(40w) +30
b(w) = 80w +30 . . . . . . blooms over w weeks
__
<h3>Part B:</h3>
The input units of f(s) are <em>seeds</em>. The output units are <em>flowers</em>.
The input units of s(w) are <em>weeks</em>. The output units are <em>seeds</em>.
Then the function b(w) above has input units of <em>weeks</em>, and output units of <em>flowers</em> (blooms).
__
<h3>Part C:</h3>
For 35 weeks, the number of flowers that bloomed is ...
b(35) = 80(35) +30 = 2830 . . . . flowers bloomed over 35 weeks
Answer:
D)The equation is f(x)=3x^2−9x+3, and the parabola opens upward.
Answer: when x =0
Step-by-step explanation:
Y=3(0)+1
0+1
1
Answer:
rectangle
A = l x w
3x5=15
triangle
= 1/2 bh
1/2 x 3 x 1 1/2 =0.75
Step-by-step explanation:
rombus=
a=xy
3x5=15
30+0.75=30.75
(1) x+y+z=1300
(2) x+y=780 => x = 780 - y
(3) y+z=850 => z = 850 - y
Replace x and z with y in function (1)
780 - y + y + 850 - y = 1300
1630 - y = 1300
y = 330
Therefore, x = 780 - y = 780 - 330 = 450
z = 850 - y = 850 - 330 = 520
Dave can do 450 catalog orders per day
Frank can do 330 catalog orders per day
Kathy can do 520 catalog orders per day