Step-by-step explanation:
→ 42 = 7u - u
→ 42 = 6u
→ 42/6 = u
→ 7 =u or U = 7
<em><u>hope </u></em><em><u>this</u></em><em><u> answer</u></em><em><u> helps</u></em><em><u> you</u></em><em><u> dear</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>take </u></em><em><u>care </u></em><em><u>and</u></em><em><u> may</u></em><em><u> u</u></em><em><u> have</u></em><em><u> a</u></em><em><u> great</u></em><em><u> day</u></em><em><u> ahead</u></em><em><u>!</u></em>
Answer:
<em>A=3 and B=6</em>
Step-by-step explanation:
<u>Increasing and Decreasing Intervals of Functions</u>
Given f(x) as a real function and f'(x) its first derivative.
If f'(a)>0 the function is increasing in x=a
If f'(a)<0 the function is decreasing in x=a
If f'(a)=0 the function has a critical point in x=a
As we can see, the critical points may define open intervals where the function has different behaviors.
We have

Computing the first derivative:

We find the critical points equating f'(x) to zero

Simplifying by -6

We get the critical points

They define the following intervals

Thus A=3 and B=6
Answer:
hey love the answer is b hope this helps
Step-by-step explanati
Answer:

Step-by-step explanation:
1) First, find the slope of the line. Use the slope formula
. Pick two points on the line and substitute their x and y values into the formula, then solve. I used the points (-5,-4) and (0,-6):
So, the slope of the line is
.
2) Next, use the point-slope formula
to write the equation of the line in point-slope form. (From there, we can convert it to slope-intercept form.) Substitute values for the
,
and
into the formula.
Since
represents the slope, substitute
in its place. Since
and
represent the x and y values of one point on the line, pick any point on the line (any one is fine, it will equal the same thing at the end) and substitute its x and y values in those places. (I chose (0,-6), as seen below.) Then, with the resulting equation, isolate y to put the equation in slope-intercept form:

Answer:
Step-by-step explanation:
There are 4 terms
Coefficient of y term = 1
Constant = 8
The term without variable is the constant term.