You can use substitution here. First, get y alone:
14x + y = -4
subtract 14x from each side
y = -4 - 14x
Then, plug y into the second equation
-4 - 14x = 3x² - 11x - 4
then solve from there
Hope this helps :)
Answer:
The solution to the system of equations is y = -5 and x = -2.
Step-by-step explanation:
The question tells us to use substitution to solve the system. This means that the given value for x (in terms of y) should be substituted into the other equation. This is modeled below:
-4y - 5x = 30
-4y - 5(y+3) = 30
Next, we should use the distributive property to simplify the left side of the equation.
-4y -5y - 15 = 30
The next step is to combine like terms on the left side of the equation.
-9y - 15 = 30
Then, we can add 15 to both sides of the equation.
-9y = 45
Finally, we can divide both sides of the equation by -9.
y = -5
To find the value for x, we substitute in the value we just found for y into either of our original equations.
x = y + 3
x = -5 + 3
x = -2
Therefore, the correct answer is y = -5 and x = -2.
Hope this helps!
To put an equation into (x+c)^2, we need to see if the trinomial is a perfect square.
General form of a trinomial: ax^2+bx+c
If c is a perfect square, for example (1)^2=1, 2^2=4, that's a good indicator that it's a perfect square trinomial.
Here, it is, because 1 is a perfect square.
To ensure that it's a perfect square trinomial, let's look at b, which in this case is 2.
It has to be double what c is.
2 is the double of 1, therefore this is a perfect square trinomial.
Knowing this, we can easily put it into the form (x+c)^2.
And the answer is: (x+1)^2.
To do it the long way:
x^2+2x+1
Find 2 numbers that add to 2 and multiply to 1.
They are both 1.
x^2+x+x+1
x(x+1)+1(x+1)
Gather like terms
(x+1)(x+1)
or (x+1)^2.
Answer:
x = - 6
Step-by-step explanation:
- 15/3 = x + 1
- x = 1 + 15/3
- x = 3/3 + 15/3
- x = 18/3
x = - 18/3
x = - 6
Answer:
1, 2, 4, 8, 16, and 32
Step-by-step explanation: