Answer:
Step-by-step explanation:
From the figure attached,
Point B has been dilated to form point B'.
B(3, 1) → B'(6, 2)
→ B'[(2 × 3), (2 × 1)]
Since rule for the dilation of a point (x, y) by a factor of k is,
B(x, y) → B'(kx, ky)
By comparing the coordinates k = 2 is the scale factor by which the point B has been dilated about the origin.
Therefore, other vertices of the quadrilateral will be,
A(-2, 3) → A'(-4, 6)
C(1, -1) → C'(2, -2)
D(-3, -2) → D'(-6, -4)
Answer:
41.6666667?? I didnt know if you needed is simplified .-.
Answer:
no they don't one lies in quadrant 1 while the other is in quadrant 3
Step-by-step explanation:
56 because you gotta multiply it
The complete question is
Find the volume of each sphere for the given radius. <span>Round to the nearest tenth
we know that
[volume of a sphere]=(4/3)*pi*r</span>³
case 1) r=40 mm
[volume of a sphere]=(4/3)*pi*40³------> 267946.66 mm³-----> 267946.7 mm³
case 2) r=22 in
[volume of a sphere]=(4/3)*pi*22³------> 44579.63 in³----> 44579.6 in³
case 3) r=7 cm
[volume of a sphere]=(4/3)*pi*7³------> 1436.03 cm³----> 1436 cm³
case 4) r=34 mm
[volume of a sphere]=(4/3)*pi*34³------> 164552.74 mm³----> 164552.7 mm³
case 5) r=48 mm
[volume of a sphere]=(4/3)*pi*48³------> 463011.83 mm³----> 463011.8 mm³
case 6) r=9 in
[volume of a sphere]=(4/3)*pi*9³------> 3052.08 in³----> 3052 in³
case 7) r=6.7 ft
[volume of a sphere]=(4/3)*pi*6.7³------> 1259.19 ft³-----> 1259.2 ft³
case 8) r=12 mm
[volume of a sphere]=(4/3)*pi*12³------>7234.56 mm³-----> 7234.6 mm³