Answer:
Give ur life to Jesus Christ before its to late!!!!!!!!!!
Explanation:
Answer:
8.08 × 10⁻⁴
Explanation:
Let's consider the following reaction.
COCl₂(g) ⇄ CO (g) + Cl₂(g)
The initial concentration of phosgene is:
M = 2.00 mol / 1.00 L = 2.00 M
We can find the final concentrations using an ICE chart.
COCl₂(g) ⇄ CO (g) + Cl₂(g)
I 2.00 0 0
C -x +x +x
E 2.00 -x x x
The equilibrium concentration of Cl₂, x, is 0.0398 mol / 1.00 L = 0.0398 M.
The concentrations at equilibrium are:
[COCl₂] = 2.00 -x = 1.96 M
[CO] = [Cl₂] = 0.0398 M
The equilibrium constant (Keq) is:
Keq = [CO].[Cl₂]/[COCl₂]
Keq = (0.0398)²/1.96
Keq = 8.08 × 10⁻⁴
Answer:
1. the end result of meiosis is haploid daughter cells with chromosomal combinations different from those originally present in the parent.
2. Prophase, metaphase, and telophase
92-92.5 within this range
Hope this helps haha
Answer:
The reaction of one mole of oxygen (O2) releases 445 kJ of energy.
Explanation:
Firstly, the reaction is exothermic since the sign of enthalpy change ΔH is negative.
The balanced equation: CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(l): ΔH = −890 kJ,
Shows that 1 mole of CH₄ react with 2 moles of oxygen and releases 890 kJ.
So, every choice says that absorb is wrong (choice 1& 3).
Choice no. 4 is wrong since it says that 2 moles of methane releases 890 kJ, because only one mole release this amount of energy.
So, the right choice is The reaction of one mole of oxygen (O2) releases 445 kJ of energy.