Answer:
Positive: Decimals are a part of a whole just like fractions are a part of a whole. Therefore, a positive decimal is always greater than a negative decimal.
Negative: When you have two negative decimals, the one closer to zero is always greater. The farther a negative decimal is from zero, the smaller its value.
All of it put together (same text as above):
Decimals are a part of a whole just like fractions are a part of a whole. Therefore, a positive decimal is ALWAYS greater than a negative decimal. When you have two negative decimals, the one closer to zero is always greater. The farther a negative decimal is from zero, the smaller its value.
Answer:
<em>If statement(1) holds true, it is correct that </em>
<em> is an integer.</em>
<em>If statement(2) holds true, it is not necessarily correct that </em>
<em> is an integer.</em>
<em></em>
Step-by-step explanation:
Given two positive integers
and
.
To check whether
is an integer:
Condition (1):
Every factor of
is also a factor of
.

Let us consider an example:

which is an integer.
Actually, in this situation
is a factor of
.
Condition 2:
Every prime factor of <em>s</em> is also a prime factor of <em>r</em>.
(But the powers of prime factors need not be equal as we are not given the conditions related to powers of prime factors.)
Let


which is not an integer.
So, the answer is:
<em>If statement(1) holds true, it is correct that </em>
<em> is an integer.</em>
<em>If statement(2) holds true, it is not necessarily correct that </em>
<em> is an integer.</em>
<em></em>
Answer:
The coach can do this in 3,003 ways
Step-by-step explanation:
Here, the coach needs to select a team of 5 from a total of 15 players
Mathematically, the number of ways this can be done is simply 15 C5 ways
Generally, if we are to select a number of r items from n items, this can be done in nCr ways = n!/(n-r)!r!
Applying this to the situation on ground, we have;
15C5 = 15!/(15-5)!5! = 15!/10!5! = 3,003 ways
17/8..........................................
Answer:
Since you didn't give me any choices I can tell you that c is ANY ODD NUMBER THAT EXISTS.
Step-by-step explanation:
im smart ツ