Answer:
First, we write the augmented matrix.
⎡
⎢
⎣
1
−
1
1
2
3
−
1
3
−
2
−
9
|
8
−
2
9
⎤
⎥
⎦
Next, we perform row operations to obtain row-echelon form.
−
2
R
1
+
R
2
=
R
2
→
⎡
⎢
⎣
1
−
1
1
0
5
−
3
3
−
2
−
9
|
8
−
18
9
⎤
⎥
⎦
−
3
R
1
+
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
5
−
3
0
1
−
12
|
8
−
18
−
15
⎤
⎥
⎦
The easiest way to obtain a 1 in row 2 of column 1 is to interchange \displaystyle {R}_{2}R
2
and \displaystyle {R}_{3}R
3
.
Interchange
R
2
and
R
3
→
⎡
⎢
⎣
1
−
1
1
8
0
1
−
12
−
15
0
5
−
3
−
18
⎤
⎥
⎦
Then
−
5
R
2
+
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
1
−
12
0
0
57
|
8
−
15
57
⎤
⎥
⎦
−
1
57
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
1
−
12
0
0
1
|
8
−
15
1
⎤
⎥
⎦
The last matrix represents the equivalent system.
x
−
y
+
z
=
8
y
−
12
z
=
−
15
z
=
1
Using back-substitution, we obtain the solution as \displaystyle \left(4,-3,1\right)(4,−3,1).First, we write the augmented matrix.
⎡
⎢
⎣
1
−
1
1
2
3
−
1
3
−
2
−
9
|
8
−
2
9
⎤
⎥
⎦
Next, we perform row operations to obtain row-echelon form.
−
2
R
1
+
R
2
=
R
2
→
⎡
⎢
⎣
1
−
1
1
0
5
−
3
3
−
2
−
9
|
8
−
18
9
⎤
⎥
⎦
−
3
R
1
+
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
5
−
3
0
1
−
12
|
8
−
18
−
15
⎤
⎥
⎦
The easiest way to obtain a 1 in row 2 of column 1 is to interchange \displaystyle {R}_{2}R
2
and \displaystyle {R}_{3}R
3
.
Interchange
R
2
and
R
3
→
⎡
⎢
⎣
1
−
1
1
8
0
1
−
12
−
15
0
5
−
3
−
18
⎤
⎥
⎦
Then
−
5
R
2
+
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
1
−
12
0
0
57
|
8
−
15
57
⎤
⎥
⎦
−
1
57
R
3
=
R
3
→
⎡
⎢
⎣
1
−
1
1
0
1
−
12
0
0
1
|
8
−
15
1
⎤
⎥
⎦
The last matrix represents the equivalent system.
x
−
y
+
z
=
8
y
−
12
z
=
−
15
z=1
Using back-substitution, we obtain the solution as \displaystyle \left(4,-3,1\right)(4,−3,1).
The answer is (, )=(6−2, )
We reject our null hypothesis, H₀, at a level of significance of =0.01 since the P-value is less than that threshold. There is compelling statistical data to indicate that since 1991, the proportion of drivers who love driving has decreased.
Given,
The Pew Research Center recently polled n=1048 U.S. drivers and found that 69% enjoyed driving their automobiles.
In 1991, a Gallup poll reported this percentage to be 79%. using the data from this poll, test the claim that the percentage of drivers who enjoy driving their cars has declined since 1991.
To report the large-sample z statistic and its p-value,
Null hypothesis,
H₀ : p = 0.79
Alternative hypothesis,
Ha : p < 0.79
Level of significance, α = 0.01
Under H₀
Test statistic,

Z₀ = -7.948
The alternative hypothesis(Ha) is left-tailed, so the P-value of the test is given by
P-value = P(z <-7.945)
= 0.000 (from z-table)
Since the P-value is smaller than given level of significance, α=0.01 we reject our null hypothesis, H₀, at α=0.0.1 level Strong statistical evidence to conclude that the percentage of drivers who enjoy driving their cars has declined since 1991.
To learn more about hypothesis click here:
brainly.com/question/17173491
#SPJ4
We know, widest angle is always opposite to the largest side of the triangle, as largest side is 50 here (which is backward to house) so largest angle would be opposite to it. So, that corner will be touched by Fence A & B
"Proportionality Theorem" compares the sides of the same triangle
Here, According to that theorem,
ST / RS = UT / PU
If FG is an altitude, then <DFG is an right triangle.
In short, Your Answer would be Option B
For last question here, remember, longest side must be greater than either side, and must be smaller than sum of those smaller sides.
Answer:
54.26
Step-by-step explanation:
0.4+0.86= 1.26
51+2= 53
53+1.26= 54.26