Answer:
<u>1. The theoretical probability of rolling an even number and flipping heads is 25%.</u>
<u>2. The experimental probability of rolling a 1 and flipping tails is 15%.</u>
<u>3. The experimental probability of flipping heads is 40%.</u>
<u>4. I think around 7%.</u>
<u>5. I would expect to roll 3 and land on heads 8 times.</u>
Step-by-step explanation:
I am not sure about number 4.
Have a nice day!
Ask me if you need my work. :-)
 
        
             
        
        
        
Given the following information:
![\begin{tabular}
{|p{1.5cm}|p{1.5cm}|p{1.2cm}|p{1.2cm}|p{1.2cm}|}
\multicolumn{1}{|p{1.5cm}|}{State of economy}\multicolumn{1}{|p{2.6cm}|}{Probability of State of economy}\multicolumn{3}{|p{4.8cm}|}{Rate of Return if State Occurs}\\[1ex] 
\multicolumn{1}{|p{1.5cm}|}{}\multicolumn{1}{|p{2.6cm}|}{}\multicolumn{1}{|c|}{Stock A}&StockB&Stock C\\[2ex]
\multicolumn{1}{|p{1.5cm}|}{Boom}\multicolumn{1}{|p{2.6cm}|}{0.66}\multicolumn{1}{|p{1.27cm}|}{0.09}&0.03&0.34\\
\end{tabular}](https://tex.z-dn.net/?f=%5Cbegin%7Btabular%7D%0A%7B%7Cp%7B1.5cm%7D%7Cp%7B1.5cm%7D%7Cp%7B1.2cm%7D%7Cp%7B1.2cm%7D%7Cp%7B1.2cm%7D%7C%7D%0A%5Cmulticolumn%7B1%7D%7B%7Cp%7B1.5cm%7D%7C%7D%7BState%20of%20economy%7D%5Cmulticolumn%7B1%7D%7B%7Cp%7B2.6cm%7D%7C%7D%7BProbability%20of%20State%20of%20economy%7D%5Cmulticolumn%7B3%7D%7B%7Cp%7B4.8cm%7D%7C%7D%7BRate%20of%20Return%20if%20State%20Occurs%7D%5C%5C%5B1ex%5D%20%0A%5Cmulticolumn%7B1%7D%7B%7Cp%7B1.5cm%7D%7C%7D%7B%7D%5Cmulticolumn%7B1%7D%7B%7Cp%7B2.6cm%7D%7C%7D%7B%7D%5Cmulticolumn%7B1%7D%7B%7Cc%7C%7D%7BStock%20A%7D%26StockB%26Stock%20C%5C%5C%5B2ex%5D%0A%5Cmulticolumn%7B1%7D%7B%7Cp%7B1.5cm%7D%7C%7D%7BBoom%7D%5Cmulticolumn%7B1%7D%7B%7Cp%7B2.6cm%7D%7C%7D%7B0.66%7D%5Cmulticolumn%7B1%7D%7B%7Cp%7B1.27cm%7D%7C%7D%7B0.09%7D%260.03%260.34%5C%5C%0A%5Cend%7Btabular%7D)

Part A:
The expected return on an equally
weighted portfolio of these three stocks is given by:
![0.66[0.33 (0.09) + 0.33 (0.03) + 0.33(0.34)] \\ +0.34[0.33 (0.23) + 0.33(0.29) +0.33(-0.14)] \\  \\ =0.66(0.0297 + 0.0099 + 0.1122)+0.34(0.0759+0.0957-0.0462) \\  \\ =0.66(0.1518)+0.34(0.1254)=0.1002+0.0426=0.1428=\bold{14.28\%}](https://tex.z-dn.net/?f=0.66%5B0.33%20%280.09%29%20%2B%200.33%20%280.03%29%20%2B%200.33%280.34%29%5D%20%5C%5C%20%2B0.34%5B0.33%20%280.23%29%20%2B%200.33%280.29%29%20%2B0.33%28-0.14%29%5D%20%5C%5C%20%20%5C%5C%20%3D0.66%280.0297%20%2B%200.0099%20%2B%200.1122%29%2B0.34%280.0759%2B0.0957-0.0462%29%20%5C%5C%20%20%5C%5C%20%3D0.66%280.1518%29%2B0.34%280.1254%29%3D0.1002%2B0.0426%3D0.1428%3D%5Cbold%7B14.28%5C%25%7D)
Part B:
Value of a portfolio invested 21
percent each in A and B and 58 percent in C is given by
For boom: 0.21(0.09) + 0.21(0.03) + 0.58(0.34) = 0.0189 + 0.0063 + 0.1972 = 0.2224 or 22.24%. 
For bust: = 0.21(0.23) + 0.21(0.29) + 0.58(-0.14) = 0.0483 + 0.0609 - 0.0812 = 0.028 or 2.8%
Expected return = 0.66(0.2224) + 0.34(0.028) = 0.1468 + 0.00952 = 0.1563 or 15.63%
The variance is given by
 
 
        
        
        
Simplify 3x × 2 to 6x
6x - x + 8y + 4x × 2 - 3x - 5y
Simplify 4x × 2 to 8x
6x - x + 8y + 8x - 3x - 5y
Simplify 
<u>10x + 3y</u>
 
        
             
        
        
        
Answer: 
Step-by-step explanation:
 1. By definition, scientific notation has the following form:
 
 Where:
<em> a</em> is a number between 1 and 10 but does not include 10.
<em> b </em>an integer.
 2. When you multiply 3.25 by 7.8  the result is 25.35 and when you multiply  by
 by  , you obtain
, you obtain  , but to write ree thsult in scientific notation, the decimal point must be after the first digit. Therefore, you must move the decimal point one place to the left. So, the exponent changes from 9 to 10:
, but to write ree thsult in scientific notation, the decimal point must be after the first digit. Therefore, you must move the decimal point one place to the left. So, the exponent changes from 9 to 10:
 
 
        
             
        
        
        
Answer:
OK?????
Step-by-step explanation:
whyd you put a art question in mathematics?