Answer:
60 minutes for the larger hose to fill the swimming pool by itself
Step-by-step explanation:
It is given that,
Working together, it takes two different sized hoses 20 minutes to fill a small swimming pool.
takes 30 minutes for the larger hose to fill the swimming pool by itself
Let x be the efficiency to fill the swimming pool by larger hose
and y be the efficiency to fill the swimming pool by larger hose
<u>To find LCM of 20 and 30</u>
LCM (20, 30) = 60
<u>To find the efficiency </u>
Let x be the efficiency to fill the swimming pool by larger hose
and y be the efficiency to fill the swimming pool by larger hose
x = 60/30 =2
x + y = 60 /20 = 3
Therefore efficiency of y = (x + y) - x =3 - 2 = 1
so, time taken to fill the swimming pool by small hose = 60/1 = 60 minutes
Answer:
a) For this case we can use the fact that 
And for this case since we ar einterested on
and we know that the if we are below the y axis the sine would be negative then:

b) From definition we can use the fact that
and we got this:

We can use the notabl angle
and we know that :

Then we know that
correspond to 225 degrees and that correspond to the III quadrant, and we know that the sine and cosine are negative on this quadrant. So then we have this:

Step-by-step explanation:
For this case we can use the notable angls given on the picture attached.
Part a
For this case we can use the fact that 
And for this case since we ar einterested on
and we know that the if we are below the y axis the sine would be negative then:

Part b
From definition we can use the fact that
and we got this:

We can use the notabl angle
and we know that :

Then we know that
correspond to 225 degrees and that correspond to the III quadrant, and we know that the sine and cosine are negative on this quadrant. So then we have this:

Answer:
D. 6
Step-by-step explanation:
Range of any data set is the difference between the maximum value and the minimum value.
From the graph given above, the least data value plotted on the graph is 1.
Minimum value = 1
The maximum data value = 7
The range of the data set = max - min
Range = 7 - 1
Range = 6