1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pogonyaev
3 years ago
7

5. Car rental company A charges $30 a days and

Mathematics
2 answers:
olga nikolaevna [1]3 years ago
5 0

Answer:

Step-by-step explanation:

I need  the answer for same question pleas

Feliz [49]3 years ago
5 0

Answer:

Step-by-step explanation:

Let the renter drives 'x' miles

Company A:

Rental cost = 30 + 0.15x

Company B:

Rental cost = 20 + 0.20x

Given rental cost are same

20  + 0.20x = 30 + 0.15x

Subtract 20 from both sides

20 + 0.20x - 20 = 30 + 0.15x - 20

    0.20x = 10 + 0.15x

Subtract 0.15x from both sides

0.20x - 0.15x = 10 + 0.15x - 0.15x

  0.05x = 10

Divide both sides by 0.05

0.05x/0.05=10/0.05

x = 1000/5

x = 200

a) The renter has to drive 200 miles

b) Rental cost charged by company A = 30 +0.15*200

                                                                = 30 + 30

                                                               = $ 60

Rental cost charged by company B = 20 + 0.20**200

                                                          = 20 + 40

                                                          = $ 60

                                               

You might be interested in
Sketch a graph of an elevator starting on the -2 floor and traveling at +5 floors per second. Label and scale the axes.
masya89 [10]
Make the x axis seconds and y axis floors. Your first point would be at (0,-2), then (1,3), then (2,8) and so on.

You could scale the axes just going by one
3 0
3 years ago
Simplify fully, does anyone know ?
Julli [10]

Here's an explanation! :)

6 0
3 years ago
Read 2 more answers
What is the quotient (7x^(2))/(2x+6)-:(3x-5)/(x+3)
Irina18 [472]

Answer:

5.525

Step-by-step explanation:

1. (7x^(2))/(2x + 6) -:(3x - 5) / (x + 3) Solve Bold

   (7x^(2)) / (2x + 6) -:(3x - 5) / (x + 3)

2. 49x / 8x - (-2x) / 3x Solve Bold

   49x/8x-(-2x)/3x

3. 6.125 - .6 Solve Bold

Answer: 5.525

5 0
2 years ago
what is the exact area of a circle with a radius of 12 feet? A. 24π square feet B. 36π square feet C. 121π square feet D. 144π s
Maksim231197 [3]
The answer is D. 144pie square feet

5 0
3 years ago
Read 2 more answers
A ladder 25 feet long is leaning against the wall of a house. The base of the ladder is pulled away from the wall at a rate of 2
Alika [10]

As the ladder is pulled away from the wall, the area and the height with the

wall are decreasing while the angle formed with the wall increases.

The correct response are;

  • (a) The velocity of the top of the ladder = <u>1.5 m/s downwards</u>

<u />

  • (b) The rate the area formed by the ladder is changing is approximately <u>-75.29 ft.²/sec</u>

<u />

  • (c) The rate at which the angle formed with the wall is changing is approximately <u>0.286 rad/sec</u>.

Reasons:

The given parameter are;

Length of the ladder, <em>l</em> = 25 feet

Rate at which the base of the ladder is pulled, \displaystyle \frac{dx}{dt} = 2 feet per second

(a) Let <em>y</em> represent the height of the ladder on the wall, by chain rule of differentiation, we have;

\displaystyle \frac{dy}{dt} = \mathbf{\frac{dy}{dx} \times \frac{dx}{dt}}

25² = x² + y²

y = √(25² - x²)

\displaystyle \frac{dy}{dx} = \frac{d}{dx} \sqrt{25^2 - x^2} = \frac{x \cdot \sqrt{625-x^2}  }{x^2- 625}

Which gives;

\displaystyle \frac{dy}{dt} = \frac{x \cdot \sqrt{625-x^2}  }{x^2- 625}\times \frac{dx}{dt} =  \frac{x \cdot \sqrt{625-x^2}  }{x^2- 625}\times2

\displaystyle \frac{dy}{dt} =  \mathbf{ \frac{x \cdot \sqrt{625-x^2}  }{x^2- 625}\times2}

When x = 15, we get;

\displaystyle \frac{dy}{dt} =   \frac{15 \times \sqrt{625-15^2}  }{15^2- 625}\times2 = \mathbf{-1.5}

The velocity of the top of the ladder = <u>1.5 m/s downwards</u>

When x = 20, we get;

\displaystyle \frac{dy}{dt} =   \frac{20 \times \sqrt{625-20^2}  }{20^2- 625}\times2 = -\frac{8}{3} = -2.\overline 6

The velocity of the top of the ladder = \underline{-2.\overline{6} \ m/s \ downwards}

When x = 24, we get;

\displaystyle \frac{dy}{dt} =   \frac{24 \times \sqrt{625-24^2}  }{24^2- 625}\times2 = \mathbf{-\frac{48}{7}}  \approx -6.86

The velocity of the top of the ladder ≈ <u>-6.86 m/s downwards</u>

(b) \displaystyle The \ area\ of \ the \ triangle, \ A =\mathbf{\frac{1}{2} \cdot x \cdot y}

Therefore;

\displaystyle The \ area\ A =\frac{1}{2} \cdot x \cdot \sqrt{25^2 - x^2}

\displaystyle \frac{dA}{dx} = \frac{d}{dx} \left (\frac{1}{2} \cdot x \cdot \sqrt{25^2 - x^2}\right) = \mathbf{\frac{(2 \cdot x^2- 625)\cdot \sqrt{625-x^2} }{2\cdot x^2 - 1250}}

\displaystyle \frac{dA}{dt} = \mathbf{ \frac{dA}{dx} \times \frac{dx}{dt}}

Therefore;

\displaystyle \frac{dA}{dt} =  \frac{(2 \cdot x^2- 625)\cdot \sqrt{625-x^2} }{2\cdot x^2 - 1250} \times 2

When the ladder is 24 feet from the wall, we have;

x = 24

\displaystyle \frac{dA}{dt} =  \frac{(2 \times 24^2- 625)\cdot \sqrt{625-24^2} }{2\times 24^2 - 1250} \times 2 \approx \mathbf{ -75.29}

The rate the area formed by the ladder is changing, \displaystyle \frac{dA}{dt} ≈ <u>-75.29 ft.²/sec</u>

(c) From trigonometric ratios, we have;

\displaystyle sin(\theta) = \frac{x}{25}

\displaystyle \theta = \mathbf{arcsin \left(\frac{x}{25} \right)}

\displaystyle \frac{d \theta}{dt}  = \frac{d \theta}{dx} \times \frac{dx}{dt}

\displaystyle\frac{d \theta}{dx}  = \frac{d}{dx} \left(arcsin \left(\frac{x}{25} \right) \right) = \mathbf{ -\frac{\sqrt{625-x^2} }{x^2 - 625}}

Which gives;

\displaystyle \frac{d \theta}{dt}  =  -\frac{\sqrt{625-x^2} }{x^2 - 625}\times \frac{dx}{dt}= \mathbf{ -\frac{\sqrt{625-x^2} }{x^2 - 625} \times 2}

When x = 24 feet, we have;

\displaystyle \frac{d \theta}{dt} =  -\frac{\sqrt{625-24^2} }{24^2 - 625} \times 2 \approx \mathbf{ 0.286}

Rate at which the angle between the ladder and the wall of the house is changing when the base of the ladder is 24 feet from the wall is \displaystyle \frac{d \theta}{dt} ≈ <u>0.286 rad/sec</u>

Learn more about the chain rule of differentiation here:

brainly.com/question/20433457

3 0
3 years ago
Other questions:
  • Perpendicular to y = 3x + 4 through (0, -2)
    5·1 answer
  • NEED HELP ASAP!!!!<br><br> How many square feet of outdoor carpet will we need for this whole?
    7·2 answers
  • Word problem plz help thanks fam 7.04​
    11·2 answers
  • The Hamburger Joint lowered their prices and their sales increased from 1000 hamburgers a week to 2500 hamburgers a week. What i
    9·2 answers
  • A computer virus is trying to corrupt two files. The first file will be corrupted with probability 0.4. Independently of it, the
    8·1 answer
  • How to find interior angles of a polygon?
    10·1 answer
  • Help needed thank youuu
    12·2 answers
  • PLZ HELP BRAINLIEST!!! solve for v <br>d=m/v<br> thanks
    8·2 answers
  • Answer fast and show your work
    13·2 answers
  • The model below, the anchor of a guy-wire is 16 feet away from the telephone pole. John puts a 5 foot pole under the guy-wire pa
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!