The average number of goals per game Peter scores, rounded to one decimal place is 1.6
<u><em>Explanation</em></u>
In first two games Peter scored 2 goals each. So, total score in two games = (2×2)= 4
In one game he scored 0 goal and in next two games he scored 3 goals each, so the total is (3×2)= 6
In the last four games he scored 1 goal in each, so the total is (1×4)= 4
So, the total score in all
games 
Thus, the average number of goals 
So, the average number of goals per game Peter scores, rounded to one decimal place is 1.6
Answer:
x = 4, y = 2
Step-by-step explanation:
Start by multiplying the first equation by 2:
2x + 2y = 12 --> 4x + 4y = 24
Subtract the second from the first:
4x + 4y = 24
- 5x + 4y = 28
4x - 5x = -x
4y = 4y = 0
24 - 28 = -4
so you end with -x + 0 = -4
Solve for x to get x = 4
Plug x = 4 back into 2x + 2y = 12 to find y.
2(4) + 2y = 12
8 + 2y = 12
2y = 4
y = 2
Answer:
1/8
Step-by-step explanation:
sin²(π/8) − cos⁴(3π/8)
Use power reduction formulas:
1/2 (1 − cos(2×π/8)) − 1/8 (3 + 4 cos(2×3π/8) + cos(4×3π/8))
Simplify:
1/2 (1 − cos(π/4)) − 1/8 (3 + 4 cos(3π/4) + cos(3π/2))
1/2 (1 − √2/2) − 1/8 (3 + 4 (-√2/2) + 0)
1/2 − √2/4 − 1/8 (3 − 2√2)
1/2 − √2/4 − 3/8 +√2/4
1/2 − 3/8
1/8