Answer:
0.010
Step-by-step explanation:
We solve the above question using z score formula
z = (x-μ)/σ, where
x is the raw score = 63 inches
μ is the population mean = 70 inches
σ is the population standard deviation = 3 inches
For x shorter than 63 inches = x < 63
Z score = x - μ/σ
= 63 - 70/3
= -2.33333
Probability value from Z-Table:
P(x<63) = 0.0098153
Approximately to the nearest thousandth = 0.010
Therefore, the probability that a randomly selected student will be shorter than 63 inches tall, to the nearest thousandth is 0.010.
Answer:
answer is : Cos(13pi/8) = 0.3826
Step-by-step explanation:
We have, Cos (13pi/8)
Since 13pi/8 can be shown as 3pi/2 < 13pi/8 < 2pi
Hence 13pi/8 lies on fourth quadrant.
In fourth quadrant cosine will be positive.
Cos (13pi/8) = cos(3pi/2 + pi/8)
applying formula cos(A+B) = cos A cosB - sinAsinB
i.e Cos(3pi/2 + pi/8) = cos(3pi/2)cos(pi/8) - sin(3pi/2)sin(pi/8)
∵ Remember cos(3pi/2) =0 , sin(3pi/2) = -1
Cos(3pi/2 + pi/8) = 0 cos(pi/8) - (-1)sin(pi/8)
Cos(3pi/2 + pi/8) = 0 + 0.3826
Cos(3pi/2 + pi/8) = 0.3826
Hence we got Cos(13pi/8) = 0.3826
Answer: y=-13/12x-7
Step-by-step explanation:
To find the slope-intercept form, we first need to find the slope. To find the slope, you use the formula
. We use the two given points to find the slope.

Now that we have our slope, we can start filling out the slope-intercept form equation.
y=mx+b
y=-13/12x+b
Since we don't know the y-intercept, we can use one of the given points and solve for b.
6=(-13/12)(-12)+b [multiply (-13/12) and -12]
6=13+b [subtract both sides by 13]
b=-7
With the y-intercept, we can complete our equation.
y=-13/12x-7