1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
just olya [345]
3 years ago
5

Hurry!

Mathematics
1 answer:
NARA [144]3 years ago
8 0

Ans(a):

Given function is f(x)=\frac{3x-1}{x+4}

we know that any rational function is not defined when denominator is 0 so that means denominator x+4 can't be 0

so let's solve

x+4≠0 for x

x≠0-4

x≠-4

Hence at x=4, function can't have solution.


Ans(b):

We know that vertical shift occurs when we add something on the right side of function so vertical shift by 4 units means add 4 to f(x)

so we get:

g(x)=f(x)+4

g(x)=\frac{3x-1}{x+4}+4

We may simplify this equation but that is not compulsory.

Comparision:  

Graph of g(x) will be just 4 unit upward than graph of f(x).


Ans(c):

To find value of x when g(x)=8, just plug g(x)=8 in previous equation

8=\frac{3x-1}{x+4}+4


8-4=\frac{3x-1}{x+4}


4=\frac{3x-1}{x+4}


4(x+4)=(3x-1)


4x+16=3x-1


4x-3x=-1-16

x=-17

Hence final answer is x=-17

You might be interested in
Juan decided to start saving for college. He deposited $500 into an account which earns 4% simple annual interest. At the end of
Norma-Jean [14]

Answer:

$5504

Step-by-step explanation:

Given that :

Principal amount = $500

Interest = 4% simple interest annually

Amount added at the end of each year :

First year:

Principal + (Principal * rate * time)

500 + (500 * 0.04) = 520

$520 + $250 = $770

2nd year:

770 + (770 * 0.04) = $800.80

$800.80 + $250 = 1050.80

3rd year:

1050.8 + (1050.8 * 4) = 5254

$5254 + 250 = $5504

5 0
3 years ago
Suppose each edge of a cube is 7.8 cm long. Which is the BEST estimate for the volume of the cube?
Naya [18.7K]
Multiply like this. And it gives you your answer.





7.8•7.8•7.8
6 0
3 years ago
Read 2 more answers
En un estudio estadistico se van a usar unicamente variables cuantitativas discretas para ingresarlas a un programa de analisis
notka56 [123]

Answer:

la variable que se debe ingresar en el programa corresponde a: c. edad

Step-by-step explanation:

Las variables cuantitativas son aquellas que toman valores numéricos y se clasifican en variables cuantitativas discretas que son las que sólo pueden asumir un número limitado de valores en un determinado rango, como por ejemplo, el número de carros que posee una persona y variables cuantitativas continuas que pueden tomar cualquier valor en un rango específico, como por ejemplo, el peso de un objeto. De acuerdo a estas definiciones, la respuesta es que la variable que se debe ingresar en el programa corresponde a: edad porque es una variable discreta dado que se registra en números enteros y no acepta cualquier valor en un intervalo específico.

Las otras opciones no son correctas porque la nacionalidad y el nivel de escolaridad no son variables cuantitativas y la altura es una variable cuantitativa continua.

5 0
2 years ago
a package of 8 rechargeable batteries cost 12. at the rate how much would 20 rechargeable batteries would cost
Anettt [7]

Step-by-step explanation:

8 battery =12

20 battery =?(x)

8x=240

x=240÷8

x=30

for 20 battery..it would cost 30

5 0
3 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
Other questions:
  • In 2000, the number of students enrolled at Arlington Country Day School was 823 students. In 2010, the population was approxima
    6·1 answer
  • Please Answer The Mean! {NO EXPLANATION NEEDED!} &lt;3
    11·1 answer
  • 1/2x-5=10 find and justify each step
    14·2 answers
  • Order of operations:<br><br> 2 • {390 – [5 • (10 – 4 ÷ 2)] + 15} • 2
    7·2 answers
  • A 20,000 deposit earns 4.8 interest for 4 years . What is the final account balance if the interest is compounded semiannually ?
    5·1 answer
  • 3.6399; thousandths round it ​
    5·1 answer
  • Choose the statement that is true.
    12·1 answer
  • Ruth can run 157 yards in one minute. Lia can run 162 more yards than Ruth can run in one minute. How many yards can they both r
    11·1 answer
  • Jill, Meg, and Beth are sisters. Jill is 4 years younger than Meg. Enter an algebraic expression based on this situation. Let m
    12·1 answer
  • Multiply 5.4x and 2x.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!