..............4 is D and 6 is A
A translocation that moves a gene from an area of euchromatin to heterochromatin would typically cause a(n) reduction in the expression of the gene.
<h3>What is euchromatin?</h3>
- A kind of chromatin that is sparsely packed, enriched in genes, and frequently engaged in transcription is called euchromatin.
- Contrasting with heterochromatin, which is compact and less accessible for transcription, is euchromatin.
- The human genome has 92% euchromatic DNA.
<h3>What is heterochromatin?</h3>
- Heterochromatin, often known as condensed DNA or densely packed DNA, has many different types.
- Between constitutive heterochromatin and facultative heterochromatin, these variations fall on a spectrum. Both contribute to how genes are expressed.
- Eukaryotic genomes contain heterochromatin, which serves a variety of purposes including regulating gene expression and preventing DNA replication and repair.
Learn more about euchromatin here:
brainly.com/question/12318627
#SPJ4
Answer:
c. False
This statement is incorrect because the DNA of bacteria is circular without histones.
Explanation:
a. True
Some archaea have very specific lipids in their membrane. Differently of the bacterias that have usual lipids in their membranes.
b. True
Archaebacteria do not have peptidoglycans in their cell wall
d. True
Methanogenic archaeobacteria are those that use carbon dioxide and hydrogen to produce methane. They are found in the digestive system of ruminants, sewers and swamps.
A large deposit of sand and soil formed at the end of a river is a delta. When a river empties into the ocean, the current carrying smaller particles, such as soil and sand, slows down and eventually stops, causing these particles to be dropped off on the shore. This eventually leads to a triangular deposit, usually referred to as the mouth of the river.
Answer
The worm gets coated with antibodies, which activate other cells in the immune system to secrete chemicals that kill it.
Explanation:
Production of T-helper I cytokines like IFN gamma, IL-2 and IL-18 is highly protective against helminth infection by activating the macrophage intracellular killers. Protection against mucosal eosinophil responses in which antiparasitic chemicals are released. Killing also involves direct cytotoxic mechanisms in which T- cell and NK-cells directly release antiparasitic agents like perforin and granulysin which kill the parasite.