Answer:

Step-by-step explanation:
<u>Equation of a Polynomial</u>
Given the roots x1, x2, and x3 of a cubic polynomial, the equation can be written as:

Where a is the leading coefficient.
We know the three roots of the polynomial -6, -3, and 1, thus:

Since the y-intercept of the polynomial is y=90 when x=0:
90=a(0+6)(0+3)(0-1)
90=a(6)(3)(-1)=-18a
Thus
a = 90/(-18) = -5
The polynomial is:

We must write it in standard form, so we have to multiply all of the factors as follows:





Question 1)
Given: F(x) = 3x^2 + 1, G(x) = 2x - 3, H(x) = x
F(G(x)) = 3(2x - 3)^2 + 1
F(G(x)) =3(4x^2 - 12x + 9) + 1
F(G(x)) = 12x^2 - 36x + 27 + 1
F(G(x)) =12x^2 - 36x + 28
Question 2)
Given: F(x) = 3x^2 + 1, G(x) = 2x - 3, H(x) = x
H -1 (x) = x (inverse)
Divides el (1/2) q es 2 pq 2*1=2 y después multiplicas 2*2=4 entonces la respuesta es 4 y es base creo
Answer:

Step-by-step explanation:
Hello, please consider the following.

Hope this helps.
Do not hesitate if you need further explanation.
Thank you
The roots of the polynomial <span><span>x^3 </span>− 2<span>x^2 </span>− 4x + 2</span> are:
<span><span>x1 </span>= 0.42801</span>
<span><span>x2 </span>= −1.51414</span>
<span><span>x3 </span>= 3.08613</span>
x1 and x2 are in the desired interval [-2, 2]
f'(x) = 3x^2 - 4x - 4
so we have:
3x^2 - 4x - 4 = 0
<span>x = ( 4 +- </span><span>√(16 + 48) </span>)/6
x_1 = -4/6 = -0.66
x_ 2 = 2
According to Rolle's theorem, we have one point in between:
x1 = 0.42801 and x2 = −1.51414
where f'(x) = 0, and that is <span>x_1 = -0.66</span>
so we see that Rolle's theorem holds in our function.