There is only one solution in the given equation -y2 − [-5y − y(-7y − 9)] − [-y (15y + 4)] = 0. In solving this problem, apply first PEMDAS (parenthesis, exponents,multiplication, division, addition, subtraction). Then equation will transform into -y2+5y-7y2-9y+15y2+4y=0. Combine terms with same power and achieve 7y2=0. Divide both sides with 7 and perform square root of zero. Since the root is zero, we have one solution of the given equation which is y=0.
Hello!
Remember that the symbols: ≤ and ≥ are graphed as a solid line. While the symbols: < and > are graphed as a dotted line.
Also, before graphing, it would be better to convert both equations to slope-intercept form.
y ≤ x + 1 is already in slope-intercept form.
y + x ≤ -1 is not written in slope-intercept form. (Slope-intercept form: y = mx + b)
y + x ≤ - 1 (subtract x from both sides)
y ≤ -x - 1
Graphing those lines, you get the graph below. You can see that Part C best represents the solution set systems of inequalities, because that is where both of the shaded lines intersect.
Answer: Part C
Answer:
Option C, 
Step-by-step explanation:





Answer: Option C, 
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
cot(x)sec⁴(x) cot(x)sec⁴(x)
0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
0 = cos⁴(x)(1 + tan²(x))²
0 = cos⁴(x) or 0 = (1 + tan²(x))²
⁴√0 = ⁴√cos⁴(x) or √0 = (√1 + tan²(x))²
0 = cos(x) or 0 = 1 + tan²(x)
cos⁻¹(0) = cos⁻¹(cos(x)) or -1 = tan²(x)
90 = x or √-1 = √tan²(x)
i = tan(x)
(No Solution)
2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
sin²(x) - cos²(x) = sin²(x) - cos²(x)
+ cos²(x) + cos²(x)
sin²(x) = sin²(x)
- sin²(x) - sin²(x)
0 = 0
3. 1 + sec²(x)sin²(x) = sec²(x)
sec²(x) sec²(x)
cos²(x) + sin²(x) = 1
cos²(x) = 1 - sin²(x)
√cos²(x) = √(1 - sin²(x))
cos(x) = √(1 - sin²(x))
cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
x = 0
4. -tan²(x) + sec²(x) = 1
-1 -1
tan²(x) - sec²(x) = -1
tan²(x) = -1 + sec²
√tan²(x) = √(-1 + sec²(x))
tan(x) = √(-1 + sec²(x))
tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
x = 0
6 students were in class because the 5 represents on how many groups you need to have