If the dominant allele is t and the recessive allele ("non-taster") is n, than tn and tt are the genotypes of a "taster". tn is heterozygous and tt is dominant homozygous. nn is the genotype of a "non-taster" and it is recessive homozygous.
C. Medusa. Everything else on the list is a part of another creature, medusa is the only cnidarian here!
Answer:
I don't know the answer to the first one, but I can answer the second question. <em>Cellular respiration </em><u><em>has carbon dioxide and water as waste products</em></u><em>.</em>
Explanation:
<em>Cellular respiration</em> does <u>not</u> form glucose & oxygen and doesn't occur in the chloroplast, but does form <em>ATP energy</em>, <em>carbon dioxide</em>, & <em>water</em> and the process occurs in <em>mitochondria</em>. Photosynthesis on the other hand forms glucose & oxygen and does occur in the chloroplast.
Answer:
a. different alleles of the seed shape gene.
Explanation:
Mendel crossed different varieties of pea plants and he observed how phenotypic traits passed to the progeny. From these experiments, Mendel formulated the 'First Law of Segregation', where he observed that traits may exist in pairs that segregate (separate) at meiosis. During meiosis, i.e., gamete formation, these two factors separate from each other, thereby each gamete has the same probability of receiving either factor. Nowadays, we know that these two factors represent two different gene variants or 'alleles' for a given gene <em>locus</em>. Alleles can be classified into dominant or recessive as in the example above described, where the R factor (round) dominates on the r factor (wrinkled) to determine the seed shape.
Answer:
D. the genetic material of living organisms
Explanation: