1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksi-84 [34.3K]
3 years ago
13

HELP!! I don't understand this at all!!!!

Mathematics
1 answer:
Lady bird [3.3K]3 years ago
8 0
If your asking what type of line it is, it is linear. This is because the line is decreasing evenly or by the even amount of spaces. Hope this helped!
You might be interested in
Roger has two golden retrievers, sadie and buddy, buddy weighs 14 pounds more than sadie, if their total wight is 136 pounds, ho
Vlad1618 [11]

Answer:

A) buddy  = sadie + 14

B) buddy + sadie = 136

A) buddy -sadie = 14

Adding equations A & B

2 * buddy = 150

buddy = 75 pounds

sadie = 61 pounds


Step-by-step explanation:


6 0
3 years ago
How many times does 100 go into 750
matrenka [14]

100 can go into 750  7.5 times :)

5 0
3 years ago
Read 2 more answers
A person who is 1.5 meters tall casts a shadow that is 8 meters long. The distance along the ground from the person (N) to the f
neonofarm [45]
1.) 1.5m/8m= fg/32m
2.) 1.5 (32)= 8m * fg
3.) 1.5 (32)/8m= fg
4.) 6m = fg

Im pretty sure that's right
7 0
3 years ago
2. Solve for y.<br><br> A 10.5<br><br> B 9<br><br> C 13.5<br><br> D 12
Vera_Pavlovna [14]
It’s A
Because if you subtract 12 from 96 you’ll get 8y=84 then divide both sides by 8 you get 21/2 simplify and get 10.5 or 10 1/2
5 0
3 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
2 years ago
Other questions:
  • The clubhouse has a water tank from which hikers fill their water jugs before walking the trail. The tank is a 5-gallon cylindri
    11·2 answers
  • the dimensions are 1 ft deep by 24 inches wide by 18 inches tall. how many cubic inches of water is that
    15·1 answer
  • Richard R skemp states "mathematics is not a collection of facts which can be demonstrated and verified in the physical world ,
    15·1 answer
  • (10 POINTS AND BRAINLIEST FOR BEST)Which number sentence represents the model?
    10·2 answers
  • ASAP!! Please help me. I will not accept nonsense answers, but will mark as BRAINLIEST if you answer is correctly with solutions
    5·1 answer
  • Can someone evaluate this problem 3 x 5 + 2 x 8 + 2
    5·1 answer
  • Solve the system of equations please<br> 1/4x+y=1<br> 3/2x-y=4/3
    15·1 answer
  • Daniel wants to buy Five-sixths of a pound of pecans. Pecans cost $7.98 per pound. How much will Daniel spend on pecans?
    8·1 answer
  • the vate rate of a country is 15% ,a woman bought an item with a price tag ghc 300 plus vat .what price did she pay for the item
    5·1 answer
  • If f(x)=2x+3÷2,find f-1(x).​
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!