A) Add three <em>line</em> segments (AD, CF, BE) to the <em>regular</em> hexagon.
B) The area of each triangle of the <em>regular</em> hexagon is 35.1 in².
C) The area of the <em>regular</em> hexagon is 210.6 in².
<h3>How to calculate the area of a regular hexagon</h3>
In geometry, regular hexagons are formed by six <em>regular</em> triangles with a common vertex. We decompose the hexagon in six <em>equilateral</em> triangles by adding three <em>line</em> segments (AD, CF, BE).The area of each triangle is found by the following equation:
A = 0.5 · (9 in) · (7.8 in)
A = 35.1 in²
And the area of the <em>regular</em> polygon is six times the former result, that is, 210.6 square inches.
To learn more on polygons: brainly.com/question/17756657
#SPJ1
Answer:
D
Step-by-step explanation:
Just divide
Answer:

Step-by-step explanation:
Subtract the right side of the given equation to put it into standard form:
4x² +8x -221 = 0
Then the coefficients used in the quadratic formula are ...
When these are filled into the form ...

the result is as shown above.
Answer:
131.1 in^2
Step-by-step explanation:
a=πr^2
We have been given that the lifespans of lions in a particular zoo are normally distributed. The average lion lives 12.5 years; the standard deviation is 2.4 years. We are asked to find the probability of a lion living longer than 10.1 years using empirical rule.
First of all, we will find the z-score corresponding to sample score 10.1.
, where,
z = z-score,
x = Random sample score,
= Mean
= Standard deviation.



Since z-score of 10.1 is
. Now we need to find area under curve that is below one standard deviation from mean.
We know that approximately 68% of data points lie between one standard deviation from mean.
We also know that 50% of data points are above mean and 50% of data points are below mean.
To find the probability of a data point with z-score
, we will subtract half of 68% from 50%.


Therefore, the probability of a lion living longer than 10.1 years is approximately 16%.