Range is the y values or ouputs
domain is inputs or x vvalues
we can use any x value
but at a certain y value, w can't go below that
find thatminimum
find the vertex
for
ax^2+bx+c
the x value of the vertex is
-b/2a
plug that in to the equaiton to get the y value
-b/2a=-(-6)/(2*2)=6/4=3/2
plug that in
2(3/2)^2-6(3/2)-9
2(9/4)-9-9
9/2-18
4.5-18
-13.5
domain=all real numbers
range=from -13.5 to positive infinity
Answer:
See below
Step-by-step explanation:
<u>Parent function:</u>
<u>Transformed function:</u>
- y = 4(3)⁻²ˣ⁺⁸ + 6, (note. I see this as 8, sorry if different but it doesn't make any change to transformation method)
<u>Transformations to be applied:</u>
- f(x) → f(-x) reflection over y-axis
- f(-x) → f(-2x) stretch horizontally by a factor of 2
- f(-2x) → f(-2x + 8) translate 8 units right
- f(-2x + 8) → 4f(-2x + 8) stretch vertically by a factor of 4
- 4f(-2x + 8) → 4f(-2x + 8) + 6 translate 6 units up