1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scilla [17]
3 years ago
12

Help please Math Geometry

Mathematics
2 answers:
nataly862011 [7]3 years ago
8 0
This is an isosceles triangle which means the triangle will have 2 of the same angles and sides. The sum of interior angles of a triangle is 180 degrees. 180-70= 110 then you divide by 2 since there are 2 angles you still need to find out. 110/2=55. Therefore, x=55 degrees
Reptile [31]3 years ago
7 0
Hello

5.7+70
=???

Hope this helps
You might be interested in
Find the difference . <br>6 3/5 - 4 3/10<br>A. 2 0/5 <br>B. 2 1/5<br>C. 2 3/10<br>D. 10 9/10
pochemuha
Make improper fractions.

33/5 - 43/10

Find a common denominator, in this case it is 10.

66/10 - 43/10 = 23/10

This can be simplified to 2  3/10

Hope this helps!
6 0
3 years ago
Read 2 more answers
Please help me ASAP!! Will give Brainliest!
iogann1982 [59]

Answer:

parallelogram

Step-by-step explanation:

8 0
2 years ago
Read 2 more answers
Which list correctly orders A, B, and C from least to greatest when A= |7|, B = _6, and C = |-5|?
zheka24 [161]

Answer:

D. B,C,A

Step-by-step explanation:

A= |7|=7

B= -6

C= |-5|=5

so this means that B<C<A = -6<5<7

so; B,C,A = -6,7,5

8 0
3 years ago
1. cot x sec4x = cot x + 2 tan x + tan3x
Mars2501 [29]
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
    cot(x)sec⁴(x)            cot(x)sec⁴(x)
                   0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
                   0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
                   0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
                   0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
                   0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
                   0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
                   0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
                   0 = cos⁴(x)(1 + tan²(x))²
                   0 = cos⁴(x)        or         0 = (1 + tan²(x))²
                ⁴√0 = ⁴√cos⁴(x)      or      √0 = (√1 + tan²(x))²
                   0 = cos(x)         or         0 = 1 + tan²(x)
         cos⁻¹(0) = cos⁻¹(cos(x))    or   -1 = tan²(x)
                 90 = x           or            √-1 = √tan²(x)
                                                         i = tan(x)
                                                      (No Solution)

2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
              sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
   sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
                               sin²(x) - cos²(x) = sin²(x) - cos²(x)
                                         + cos²(x)              + cos²(x)
                                             sin²(x) = sin²(x)
                                           - sin²(x)  - sin²(x)
                                                     0 = 0

3. 1 + sec²(x)sin²(x) = sec²(x)
           sec²(x)             sec²(x)
      cos²(x) + sin²(x) = 1
                    cos²(x) = 1 - sin²(x)
                  √cos²(x) = √(1 - sin²(x))
                     cos(x) = √(1 - sin²(x))
               cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
                                 x = 0

4. -tan²(x) + sec²(x) = 1
               -1               -1
      tan²(x) - sec²(x) = -1
                    tan²(x) = -1 + sec²
                  √tan²(x) = √(-1 + sec²(x))
                     tan(x) = √(-1 + sec²(x))
            tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
                             x = 0
5 0
3 years ago
Which would the phrase "two times the quotient of a number and 3" look like as a variable expression?
Naya [18.7K]
2 n/3 would be the closest answer although it looks as if the 2 is supposed to be multiplied by n/3 which would lead me to write it as 2(n/3)

6 0
3 years ago
Other questions:
  • How do you find the lease common fatcor
    5·1 answer
  • H(x)=4x-2 find h(-9)
    14·1 answer
  • Jack's mother gave him 50 chocolates to give to his friends at his birthday party. He gave 3 chocolates to each of his friends a
    12·1 answer
  • What is the answer for -5-(15y-1)=2(7y-16)-y
    8·1 answer
  • The length of a rectangle is 3 ft longer than it’s width. If the perimeter of the rectangle is 26 ft find the are
    8·1 answer
  • What is 1/2b x 6/10 ?
    9·1 answer
  • A freezer was set at 0 C, sophia reset it to 8.5 C. Would the temperature in the freezer likey rise or drop? By how many degrees
    15·1 answer
  • Which expression represents "10 less than the product of 12 and 9"?
    15·1 answer
  • JKLM is a rhombus. KM is 20 and JL is 48. Find the perimeter of the<br><br> rhombus.
    13·1 answer
  • Pls help!! (20 points)
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!