4(2) + 3(4) =
8 + 12 =
20
and your final answer is 20
Answer:
Option C
The Area Of Shaded Region is 50.2 cm²
Step-by-step explanation:
For A given Circle,
<u>For</u><u> </u><u>Small</u><u> </u><u>(</u><u>Non-Shaded</u><u>)</u><u> </u><u>Circle</u><u>:</u>
Diameter (d) = 6 cm
Radius = d ÷ 2 = 6/2 = 3 cm
For Area of Small (Non-Shaded) Circle
<h3>
<u>Formula</u><u>:</u></h3>
<u>A = πr²</u>
A = 3.14 × (3)² cm
A = 3.14 × 9 cm
A = 28.26 cm²
<u>For </u><u>A</u><u>r</u><u>e</u><u>a</u><u> </u><u>of</u><u> </u><u>Big</u><u> (</u><u>S</u><u>haded) Circle:</u>
Diameter (d) = 10 cm
Radius = d ÷ 2 = 10/2 = 5 cm
For Area of Small (Non-Shaded) Circle
<h3><u>Formula:</u></h3>
<u>A = πr²</u>
A = 3.14 × (5)² cm
A = 3.14 × 25 cm
A = 78.5 cm²
<u>For</u><u> </u><u>The</u><u> </u><u>Area</u><u> </u><u>Of</u><u> </u><u>Shaded</u><u> </u><u>Region</u>
Area of Big Circle - Area of Small Circle
78.5 cm² - 28.26 cm² = 50.24 cm²
Thus, The Area Of Shaded Region is
50.2 cm²
<u>-TheUnknownScientist</u>
5x-4=-2(3x+2)
5x-4= -6x-4
5x+6x= -4+4
11x=0
X=0/11
Simultaneous equations can be solved using inverse matrix operation.
The complete steps of Jacob's solution are:
![\left[\begin{array}{cc}4&1\\-2&3\end{array}\right]^{-1} \cdot \left[\begin{array}{cc}4&1\\-2&3\end{array}\right]\left[\begin{array}{c}x&y\end{array}\right] = \frac{1}{14}\left[\begin{array}{cc}3&-1\\2&4\end{array}\right] \cdot \left[\begin{array}{c}2&-22\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%5E%7B-1%7D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B1%7D%7B14%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26-1%5C%5C2%264%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-22%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \left[\begin{array}{cc}4&1\\-2&3\end{array}\right] \cdot \left[\begin{array}{c}2&-22\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-22%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \frac{1}{14} \left[\begin{array}{c}28&-84\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B1%7D%7B14%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D28%26-84%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \left[\begin{array}{c}2&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-6%5Cend%7Barray%7D%5Cright%5D)
We have:


Calculate the determinant of ![\left[\begin{array}{cc}4&1\\-2&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D)



So, the inverse matrix becomes
![A = \frac{1}{14}\left[\begin{array}{cc}4&1\\-2&3\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cfrac%7B1%7D%7B14%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D)
Replace the first column with
to calculate the value of x
![x = \frac{1}{14}\left[\begin{array}{cc}2&1\\-22&3\end{array}\right]](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B1%7D%7B14%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%261%5C%5C-22%263%5Cend%7Barray%7D%5Cright%5D)
So, we have:




Replace the second column with
to calculate the value of y
![y = \frac{1}{14}\left[\begin{array}{cc}4&2\\-2&-22\end{array}\right]](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7B1%7D%7B14%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%262%5C%5C-2%26-22%5Cend%7Barray%7D%5Cright%5D)
So, we have:




Hence, the complete process is:
![\left[\begin{array}{cc}4&1\\-2&3\end{array}\right]^{-1} \cdot \left[\begin{array}{cc}4&1\\-2&3\end{array}\right]\left[\begin{array}{c}x&y\end{array}\right] = \frac{1}{14}\left[\begin{array}{cc}3&-1\\2&4\end{array}\right] \cdot \left[\begin{array}{c}2&-22\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%5E%7B-1%7D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B1%7D%7B14%7D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26-1%5C%5C2%264%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-22%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \left[\begin{array}{cc}4&1\\-2&3\end{array}\right] \cdot \left[\begin{array}{c}2&-22\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%261%5C%5C-2%263%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-22%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \frac{1}{14} \left[\begin{array}{c}28&-84\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cfrac%7B1%7D%7B14%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D28%26-84%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{c}x&y\end{array}\right] = \left[\begin{array}{c}2&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%26-6%5Cend%7Barray%7D%5Cright%5D)
Read more about matrices at:
brainly.com/question/11367104