<span>sinx - cosx =sqrt(2)
Taking square on both sides:
</span>(sinx - cosx)^2 =sqrt(2)^2<span>
sin^2(x) -2cos(x)sin(x) + cos^2(x) = 2
Rearranging the equation:
sin^2(x)+cos^2(x) -2cos(x)sin(x)=2
As,
</span><span>sin^2(x)+cos^2(x) = 1
</span><span>So,
1-2sinxcosx=2
1-1-2sinxcosx=2-1
-</span><span>2sinxcosx = 1
</span><span>Using Trignometric identities:
-2(0.5(sin(x+x)+sin(x-x))=1
-sin2x+sin0=1
As,
sin 0 = 0
So,
sin2x+0 = -1
</span><span>sin2x = -1</span><span>
2x=-90 degrees + t360
Dividing by 2 on both sides:
x=-45 degrees + t180
or 2x=270 degrees +t360
x= 135 degrees + t180 where t is integer</span>
Answer:
<h2>C. 5/9</h2><h2 />
Step-by-step explanation:
10x = 5.5
<u> -x = 0.5</u>
9x = 5
x = 5/9
therefore, the answer is C. 5/9
A^7. "A" raised to the power of 7 would be the exponential form. hope this helps.
Answer:
<h2><em><u>Option</u></em><em><u> </u></em><em><u>C</u></em></h2>
Step-by-step explanation:
<em><u>Here</u></em><em><u>,</u></em>
<em>[</em><em>Taking</em><em> </em><em>'</em><em>A'</em><em> </em><em>=</em><em> </em><em>'</em><em>a'</em><em>]</em>

<em><u>Then</u></em><em><u> </u></em><em><u>for</u></em><em><u> </u></em><em><u>'</u></em><em><u>r</u></em><em><u>'</u></em><em><u>,</u></em>




<em><u>Hence</u></em><em><u>,</u></em>
<em><u>Option</u></em><em><u> </u></em><em><u>C</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>correct</u></em><em><u> </u></em><em><u>.</u></em>