Answer:
Velocity of Object with 2 kg= 3.390 m/s
Velocity of Object with 3 kg= 3.404 m/s
Explanation:
From the picture, it can be seen that object B is initially at rest while object A is travelling at a speed of 5m/s. After the collision, Object A moves at an angle of 65 degrees while object B moves at an angle of 37 degrees.
We also know that momentum of a closed system is conserved.
Initial momentum along the x-axis = 2*5.5 = 11
Initial momentum along y-axis = 0
Final momentum along x-axis= a*Cos(65)*2 +b*Cos(37) *3= 11 (a is the velocity of object A of 2 kg after collision where as b is the velocity of object B of 3 kg after collision. velocity is multiplied by cosines of the angle from x axis to give the horizontal component of the velocities).
Final momentum along y-axis = a*Sin(65)*2 - b*Sin(37)*3 =0 (We can see that vertical components of velocity are opposite in direction to each other)
Solve both the equations simultaneously for a and b.
A 60.0 kg secretary running up a 4.0 m tall flight of stairs in 4.2 s has an average power of 560 W (Option b).
<h3>What is power?</h3>
Power is the work done over a period of time.
A secretary with a mass (m) of 60.0 kg runs up a 4.0 m (d) tall flight of stairs. Given gravity (g) is 9.81 m/s², the work (W) done is:
W = m × g × d = 60.0 kg × 9.81 m/s² × 4.0 m = 2.35 × 10³ J
They do 2.4 × 10³ J of work in 4.2 s (t). The average power (P) is:
P = W / t = 2.35 × 10³ J / 4.2 s = 560 W
A 60.0 kg secretary running up a 4.0 m tall flight of stairs in 4.2 s has an average power of 560 W (Option b).
Learn more about power here: brainly.com/question/911620
#SPJ1
Answer:
Fundamental quantities are quantities that were created to measure a object/substance which are the basis on which derived quantities are formed, where as derived quantities are created by extracting variables from the fundamental quantities.
Answer:
A generator converts mechanical energy into electrical energy, while a motor does the opposite - it converts electrical energy into mechanical energy.
Explanation:
On or near the surface of the Earth, 1 newton is the weight of about 102 grams of mass.
Note that the gravitational force between the object and the Earth is always the
same. It doesn't matter whether the object is falling, flying, floating, fluttering,
rising, sinking, rolling, sliding, or just laying there. It doesn't change.