1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dedylja [7]
3 years ago
6

Write 10 x 10 x 10 x 10 x 10 x 10 with an exponent. Explain how you decided what exponent to write

Mathematics
2 answers:
valentina_108 [34]3 years ago
5 0

10x10x10x10x10x10=1000000

{10}^{6}

means 10x10x10x10x10x10

as it's basically saying 10 is multiplied by itself 6 times which gives you 1000000

Triss [41]3 years ago
4 0

Exponents work by multiplying the number as many times as it's exponent. So in this case 10^6 would equal 10 x 10 x 10 x 10 x 10 x 10 and when multiplied together it should equal 1,000,000.

<u>Work to support answer:</u>

10^6

10^6=10 \times 10\times10\times 10\times 10\times 10

10 \times 10\times10\times 10\times 10\times 10 = 1000000

= 1000000

Therefore your answer is "10^6."

Hope this helps

You might be interested in
Solve for x. 2x = 15 + x x = -15 x = 15 x = -15/2 x = 15/2
Andrew [12]

Answer:

x=15

Step-by-step explanation:

2x=15+x

2x-x=15

x=15

5 0
3 years ago
Can i please get help with this question?
Aleonysh [2.5K]

1,5 . n = 13,65


We know:


1,5=\frac{15}{10}

and

13,65=\frac{1365}{100}


So,


\frac{15}{10}.n=\frac{1365}{100}


Pass \frac{15}{10} as division.


n = \frac{\frac{1365}{100}}{\frac{15}{10}}


Btw, we also know:


\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a.d}{b.c}


So,


n = \frac{\frac{1365}{100}}{\frac{15}{10}}

n = \frac{1365.10}{100.15}

n = \frac{13650}{1500}

n = \frac{91}{10}

n = 9,1

5 0
3 years ago
Senpai help me what is 657×678​
labwork [276]

Answer:

The answer is 445,446

Step-by-step explanation:

have a great day everyone :)

8 0
3 years ago
Read 2 more answers
Does 3 tenths equal 4 fifths?
OleMash [197]
No it does not equal 4 fifths
6 0
3 years ago
Read 2 more answers
Find the center that eliminates the linear terms in the translation of 4x^2 - y^2 + 24x + 4y + 28 = 0.(-3, 2)(-3,- 2)(4, 0)
baherus [9]

Step 1

Given;

4x^2-y^2+24x+4y+28=0

Required; To find the center that eliminates the linear terms

Step 2

\begin{gathered} 4x^2-y^2+24x+4y=-28 \\ 4x^2+24x-y^2+4y=-28 \\ Complete\text{ the square }; \\ 4x^2+24x \\ \text{use the form ax}^2+bx\text{ +c} \\ \text{where} \\ a=4 \\ b=24 \\ c=0 \end{gathered}\begin{gathered} consider\text{ the vertex }form\text{ of a }parabola \\ a(x+d)^2+e \\ d=\frac{b}{2a} \\ d=\frac{24}{2\times4} \\ d=\frac{24}{8} \\ d=3 \end{gathered}\begin{gathered} Find\text{ the value of e using }e=c-\frac{b^2}{4a} \\ e=0-\frac{24^2}{4\times4} \\ e=0-\frac{576}{16}=-36 \end{gathered}

Step 3

Substitute a,d,e into the vertex form

\begin{gathered} a(x+d)^2+e \\ 4(x+_{}3)^2-36 \end{gathered}\begin{gathered} 4(x+3)^2-36-y^2+4y=-28 \\ 4(x+3)^2-y^2+4y=\text{ -28+36} \\  \\  \end{gathered}

Step 4

Completing the square for -y²+4y

\begin{gathered} \text{use the form ax}^2+bx\text{ +c} \\ \text{where} \\ a=-1 \\ b=4 \\ c=0 \end{gathered}\begin{gathered} consider\text{ the vertex }form\text{ of a }parabola \\ a(x+d)^2+e \\ d=\frac{b}{2a} \\ d=\text{ }\frac{4}{2\times-1} \\ d=\frac{4}{-2} \\ d=-2 \end{gathered}\begin{gathered} Find\text{ the value of e using }e=c-\frac{b^2}{4a} \\ e=0-\frac{4^2}{4\times(-1)} \\  \\ e=0-\frac{16}{-4} \\ e=4 \end{gathered}

Step 5

Substitute a,d,e into the vertex form

\begin{gathered} a(y+d)^2+e \\ =-1(y+(-2))^2+4 \\ =-(y-2)^2+4 \end{gathered}

Step 6

\begin{gathered} 4(x+3)^2-y^2+4y=\text{ -28+36} \\ 4(x+3)^2-(y-2)^2+4=-28+36 \\ 4(x+3)^2-(y-2)^2=-28+36-4 \\ 4(x+3)^2-(y-2)^2=4 \\ \frac{4(x+3)^2}{4}-\frac{(y-2)^2}{4}=\frac{4}{4} \\ (x+3)^2-\frac{(y-2)^2}{2^2}=1 \end{gathered}

Step 7

\begin{gathered} \frac{(x-h)^2}{a^2}-\frac{(y-k)^2}{b^2}=1 \\ \text{This is the }form\text{ of a hyperbola.} \\ \text{From here } \\ a=1 \\ b=2 \\ k=2 \\ h=-3 \end{gathered}

Hence the answer is (-3,2)

4 0
1 year ago
Other questions:
  • If the median were to be calculated at 82.5 degrees, then would the feasible mean be 81.6?
    10·1 answer
  • Solve the system using elimination:<br> -5x + 3y = 2 for x<br> -5x - 5y = -30 for y
    8·1 answer
  • The order of magnitude for the population of the United States is 8.
    14·2 answers
  • Factor 3x^3+6x^2+x+2 by grouping
    12·2 answers
  • What’s 6X -4 equals 2X +24
    12·2 answers
  • What is greater 5/8'' or 7/16''
    6·1 answer
  • Pleasee helppppp im so close to being done and this is my last day !!
    13·1 answer
  • What is the area of this shape?(look at picture)
    5·2 answers
  • Find the missing segment in the image below​
    13·1 answer
  • Hi please help and show how you got to your answer! Thank you
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!