Answer:
either 34 or 214
Step-by-step explanation:
Answer:6.25
Step-by-step explanation : ratio of areas = one half :two point five in a half
=1.0:6.25
The measure of angle 1 is 60* since it is 1/6 of 360*.
<h2><u>Question</u>:-</h2>
The measurement of the three interior angles of a quadrilaterals are: 85 °, 54 ° and 96 °, what is the measurement of the fourth angle?
<h2><u>Answer</u>:-</h2>
<h3>Given:-</h3>
The measurement of the three interior angles of a quadrilaterals are: 85 °, 54 ° and 96 °
<h3>To Find:-</h3>
The measurement of the fourth angle.
<h2>Solution:-</h2>
By angle sum property of a quadrilateral,
Sum of all the interior angles = 360 °
So, let the fourth angle be x
85 ° + 54 ° + 96 ° + x = 360 °
235 ° + x = 360 °
x = 360 ° - 235 ° = 125 °
<h3>The measurement of the fourth angle is <u>1</u><u>2</u><u>5</u><u> </u><u>°</u>. [Answer]</h3>
The first equation is linear:

Divide through by

to get

and notice that the left hand side can be consolidated as a derivative of a product. After doing so, you can integrate both sides and solve for

.
![\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac1xy\right]=\sin x](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cleft%5B%5Cdfrac1xy%5Cright%5D%3D%5Csin%20x)


- - -
The second equation is also linear:

Multiply both sides by

to get

and recall that

, so we can write



- - -
Yet another linear ODE:

Divide through by

, giving


![\dfrac{\mathrm d}{\mathrm dx}[\sec x\,y]=\sec^2x](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5B%5Csec%20x%5C%2Cy%5D%3D%5Csec%5E2x)



- - -
In case the steps where we multiply or divide through by a certain factor weren't clear enough, those steps follow from the procedure for finding an integrating factor. We start with the linear equation

then rewrite it as

The integrating factor is a function

such that

which requires that

This is a separable ODE, so solving for

we have



and so on.