1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks [24]
3 years ago
11

In a sample of yeast dna, 31.5% of the bases are adenine (a). predict the approximate percentages of c, g, and t. explain.

Biology
1 answer:
hjlf3 years ago
5 0
T would be 31.5% - the same as A. C and G would be about 18.5% each. A & T and C& G are always found in about the same percentages of each other. A = T (Total of 63%, subtract from 100 = 37% which will be equally shared by G and C at 18.5)
You might be interested in
What is an example of something that moves but is not alive?
sergeinik [125]
A robot moves but it is not alive.
8 0
3 years ago
Why are identical twins exactly similar while fraternal twins are dissimilar ??​
sergij07 [2.7K]

Answer:

Fraternal twins are “dizygotic,” meaning that they developed from two different eggs fertilized by two different sperm cells, while identical twins are “monozygotic” i.e., they developed from a single fertilized egg that split.

Explanation:

7 0
2 years ago
Felicity cannot experience fear. if felicity's inability to experience fear is caused by damage to the brain, which area of the
Inga [223]
The are of the brain responsible for fear is called Amygdalae.
8 0
3 years ago
2. <br> What organs make up the alimentary canal?
cluponka [151]

Explanation:

it consists of mouth, pharynx, gullet, stomach, small intestine, large intestine, appendix, colon, rectum, and anus.

All these parts are found in most vertebrates

5 0
2 years ago
Monohybrid Mice, i need help
Katyanochek1 [597]

Answer/Explanation:

  • <em>See attached images showing the crosses on a Punnett square as well as the genotype and phenotypes of each cross.</em>

I. Cross between a female Gg with a male gg (GG X gg):

1. Probability of getting gray offspring (Gg) = 2/4 (¼+ ¼) = ½  

2. Probability of getting albino offspring (gg) = 2/4 (¼+ ¼) = ½

3. There are 2 possible genotypes among the offspring, which are Gg and gg.

4. There are 2 possible phenotypes among the offspring, which are gray and albino coat color.

5. Probability of getting heterozygous offspring (i.e. Gg) = 2/4 = ½

6. Probability of getting homozygous offspring (i.e. GG or gg) = Probability of getting GG + Probability of getting gg = ½ + 0 = ½  

7. The color of the female that was crossed (i.e. Gg), is gray color. The allele for gray coat color (G) is dominant over the allele for albino coat color (g).

8. The color of the male (gg) that was crossed is albino. The recessive allele (g) for albino coat color, in its homozygous state would express itself in the absence of the dominant G allele for gray color.

II. Cross between homozygous gray female with a heterozygous male (GG X Gg):

1. Probability of getting gray offspring (GG or Gg) = 4/4 (i.e. ¼+ ¼ + ¼ + ¼ ) = 1  

2. Probability of getting albino offspring (gg) = 0  

3. There are only 2 possible genotypes among the offspring, which are GG and Gg.

4. There is only 1 possible phenotype among the offspring, which is gray coat color.

5. Probability of getting heterozygous offspring (i.e. Gg) = 2/4 (i.e. ¼+ ¼ ) = ½

6. Probability of getting homozygous offspring (i.e. GG or gg) = Probability of getting GG + Probability of getting gg = 0 + ½  = ½  

7. The genotype of the female that was crossed is GG, given that the female is homozygous gray.

8. The male crossed is a heterozygous male (Gg), the male is gray.

III. Cross between a gray female, whose father was albino, with a heterozygous male (Gg X Gg):

We can make a good guess of the genotype of the female, given that gray color is dominant over albino, and the father was albino (gg). The father can only contribute sperm having only (g) allele, while the mother must contribute only a (G) allele to give a gray offspring. The gray female is definitely heterogyzous female i.e Gg

1. Probability of getting gray offspring (Gg or GG) =  ¾ (½ + ¼)  

2. Probability of getting albino offspring (gg) = ¼

3. There are 3 possible genotypes among the offspring, which are GG, Gg, and gg.

4. There are 2 possible phenotypes among the offspring, which are gray and albino coat color.

5. Probability of getting heterozygous offspring (i.e. Gg) = 2/4 = ½  

6. Probability of getting homozygous offspring (i.e. GG or gg) = Probability of getting GG + Probability of getting gg = ¼ + ¼ = ½  

7. The genotype of the female is Gg. We know this because we were given that it is gray in color, and gray is dominant over albino. Also, given that the father was albino (gg), a (g) allele can only be contributed by the father to combine with the dominant (G) allele to give us a female that has heterozygous gray coat color (Gg).

8. The genotype of the male is Gg. We know this because we were given that it was a heterozygous male. If an organism is heterozygous, it has different alleles controlling that trait.

IV. Cross between an albino female, whose father was gray, with a gray male, whose mother was albino (gg X Gg):

The albino female’s genotype is gg, because the g allele is recessive. The gray male’s genotype, whose mother was albino (gg) is definitely Gg, because gray is dominant, and to get a gray offspring, a G allele from the mother of the male must combine with the g allele that the albino father can only contribute i.e. Gg or GG from mother X gg from father = Gg (the gray male offspring).

1. Probability of getting gray offspring =  ¼ + ¼ = ½  

2. Probability of getting albino offspring (gg) = ¼ + ¼ = ½  

3. There are 2 possible genotypes among the offspring, which are Gg, and gg.

4. There are 2 possible phenotypes among the offspring, which are gray and albino coat color.

5. Probability of getting heterozygous offspring (i.e. Gg) = ¼ + ¼  = ½  

6. Probability of getting homozygous offspring (i.e. gg or GG) = ½ + 0 = ½  

7. The genotype of the gray father of the albino female (gg) is Gg. Of the two possible genotypes of the gray father (i.e. GG or Gg), Gg is the most likely genotype to contribute the recessive g allele that would pair up with another g allele from the mother to give an albino female (gg), i.e. Gg (father) X Gg (Mother) or Gg (Father) X gg (Mother) = gg (albino female)

5 0
3 years ago
Other questions:
  • FAST!!! I NEED YOUR HELP!!! MULTIPLE CHOICE!!!
    7·1 answer
  • I digest waste and recycle old cell parts.What type of cell organelle am I?
    8·1 answer
  • What are some of the basic characteristics that scientists consider when classifying living things?
    15·1 answer
  • Various insects have a marvelous capacity to protect themselves by _________ the appearance of twigs and other objects in their
    15·1 answer
  • Please help me in this 7th grade science review
    14·1 answer
  • When one DNA molecule is replicated, the result is two DNA molecules. What is true of the second DNA molecule?
    15·1 answer
  • Division of replicated chromosomes occurs during:
    5·1 answer
  • A polygenic trait is contributed by two or more genes one gene two alleles multiple alleles
    10·2 answers
  • Why does an organism need specialized cells
    5·2 answers
  • What type of wave is light? And does it need a medium to travel through?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!