Answer:
95% confidence interval for the proportion of students supporting the fee increase is [0.767, 0.815]. Option C
Step-by-step explanation:
The confidence interval for a proportion is given as [p +/- margin of error (E)]
p is sample proportion = 870/1,100 = 0.791
n is sample size = 1,100
confidence level (C) = 95% = 0.95
significance level = 1 - C = 1 - 0.95 = 0.05 = 5%
critical value (z) at 5% significance level is 1.96.
E = z × sqrt[p(1-p) ÷ n] = 1.96 × sqrt[0.791(1-0.791) ÷ 1,100] = 1.96 × 0.0123 = 0.024
Lower limit of proportion = p - E = 0.791 - 0.024 = 0.767
Upper limit of proportion = p + E = 0.791 + 0.024 = 0.815
95% confidence interval for the proportion of students supporting the fee increase is between a lower limit of 0.767 and an upper limit of 0.815.
= 1455
generate a few terms of the sequence using
= 3n + 2
= ( 3 × 1) + 2 = 5
= (3 × 2) + 2 = 8
= (3 × 3 ) + 2 = 11
= (3 × 4 ) + 2 = 14
= ( 3 × 5 ) + 2 = 17
the terms are 5, 8, 11, 14, 17
these are the terms of an arithmetic sequence
sum to n terms is calculated using
=
[ 2a + (n-1)d]
where a is the first term and d the common difference
d = 8 - 5 = 11 - 8 = 14 - 11 = 3 and
= 5
=
[( 2 × 5) + (29 × 3) ]
= 15( 10 + 87) = 15 × 97 = 1455
The Answer Is <span>factor by grouping</span>
Hello there!
Domain={-3,5,2}
Range={6,3,1}
Hope this helps
Have a great day/night
A,b are 8,2. its an easy guess.
now that makes it easy