Answer:
A) The best way to picture this problem is with a probability tree, with two steps.
The first branch, the person can choose red or blue, being 2 out of five (2/5) the chances of picking a red marble and 3 out of 5 of picking a blue one.
The probabilities of the second pick depends on the first pick, because it only can choose of what it is left in the urn.
If the first pick was red marble, the probabilities of picking a red marble are 1 out of 4 (what is left of red marble out of the total marble left int the urn) and 3 out of 4 for the blue marble.
If the first pick was the blue marble, there is 2/4 of chances of picking red and 2/4 of picking blue.
B) So a person can have a red marble and a blue marble in two ways:
1) Picking the red first and the blue last
2) Picking the blue first and the red last
C) P(R&B) = 3/5 = 60%
Step-by-step explanation:
C) P(R&B) = P(RB) + P(BR) = (2/5)*(3/4) + (3/5)*(2/4) = 3/10 + 3/10 = 3/5
Answer:
t = sqrt(500/4.9) =~ 10.1 seconds/
Answer: 10.1015 seconds (this is approximate)
Step-by-step explanation:
Use 4.9t^2 + v0t = s
a) A bolt falls off an airplane at an altitude of 500 m. Approximately how long does it take the bolt to reach the ground?
s = 4.9t^2 + v0t = 500
4.9t^2 = 500
t = sqrt(500/4.9) =~ 10.1 seconds
Part A)
v = initial velocity = 0
s = 500 = vertical distance the object travels (from plane to ground)
Plug in the given values and solve for t
4.9t^2 + v*t = s
4.9t^2 + 0*t = 500
4.9t^2 + 0 = 500
4.9t^2 = 500
t^2 = 500/4.9
t^2 = 102.04081632653
t = sqrt(102.04081632653)
t = 10.101525445522
t = 10.1015
Answer: 10.1015 seconds (this is approximate)
If you are reflecting across the line y = x, then the x value becomes the y-vale and the y-value becomes the x-value. So the answer would be (6, -1) (Just trade places with x and y.)
Answer:
Step-by-step explanation:
To analyse a graph you are meant to determine a general trend, relating the results of an experiment to the hypothesis as well as to form. For example you look at all the values in a line graph and you are yo predict one you are to find its common increase or decrease.
If all possible vertical lines will only cross the relation in one place, then the relation is a function.This works because if a vertical line crosses a relation in more than one place it means that there must be two y values corresponding to one x value in that relation.
We can use the fact that, for
,

Notice that
![\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac1{1-x}\right]=\dfrac1{(1-x)^2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cleft%5B%5Cdfrac1%7B1-x%7D%5Cright%5D%3D%5Cdfrac1%7B%281-x%29%5E2%7D)
so that
![f(x)=\displaystyle\frac5{(1-x)^2}=5\frac{\mathrm d}{\mathrm dx}\left[\sum_{n=0}^\infty x^n\right]](https://tex.z-dn.net/?f=f%28x%29%3D%5Cdisplaystyle%5Cfrac5%7B%281-x%29%5E2%7D%3D5%5Cfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cleft%5B%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20x%5En%5Cright%5D)



By the ratio test, this series converges if

so the series has radius of convergence
.