1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marianna [84]
3 years ago
10

Karen about a piece of that was cut into eight equal pieces she ate half of one piece what fraction of the whole pizza that she

eat
Mathematics
2 answers:
Illusion [34]3 years ago
5 0
If pizza has 8 pieces, then there are 7 1/2 pieces left.
She at 1/16 of the pizza.
elena55 [62]3 years ago
5 0
She ate 1/16 of the whole pizza. It's 1/16 of a pizza because half of 1/8 is 1/16
You might be interested in
PLSSS HELP ME IN THIS QUESTION IT IS SO HARD CHALLENGES
lesya692 [45]

Answer:

Step-by-step explanation:

1. 300

2. 2100

3. 560

4. 2800

5. 1200

6. 240

6 0
3 years ago
Read 2 more answers
Jack gives half of his baseball card collection to Bobby. He then loses 5 of his remaining cards. He now has 13 baseball cards.
victus00 [196]
The solution for this task is: 13+5=18 18*2=36
4 0
3 years ago
Find missing angleeeeeeeeeeeeeeeeeeeeeeee​
dimulka [17.4K]

Answer:

C) 80

Step-by-step explanation:

triangles always add up to 180 degrees, so 80+20=100 the missing angle is 80 degrees

4 0
3 years ago
What is the mean of this discrete random variable? That is, what is EP), the expected value of X? O A. 32.63 O B. 31.47 O C. 29.
kkurt [141]

According to this formula, we take each observed X value and multiply it by its respective probability. We then add these products to reach our expected value. You may have seen this before referred to as a weighted average. It is known as a weighted average because it takes into account the probability of each outcome and weighs it accordingly. This is in contrast to an unweighted average which would not take into account the probability of each outcome and weigh each possibility equally.

Let's look at a few examples of expected values for a discrete random variable:

Example

 

A fair six-sided die is tossed. You win $2 if the result is a “1,” you win $1 if the result is a “6,” but otherwise you lose $1.

<span>The Probability Distribution for X = Amount Won or Lost<span><span>X+$2+$1-$1</span><span>Probability1/61/64/6</span></span></span>

<span><span>E(X)=$2(<span>16</span>)+$1(<span>16</span>)+(−$1)(<span>46</span>)=$<span><span>−1</span>6</span>=−$0.17</span><span>E(X)=$2(<span>16</span>)+$1(<span>16</span>)+(−$1)(<span>46</span>)=$<span><span>−1</span>6</span>=−$0.17</span></span>

The interpretation is that if you play many times, the average outcome is losing 17 cents per play. Thus, over time you should expect to lose money.

 

Example

 

Using the probability distribution for number of tattoos, let's find the mean number of tattoos per student.

<span>Probabilty Distribution for Number of Tattoos Each Student Has in a Population of Students<span><span>Tattoos01234</span><span>Probability.850.120.015.010.005</span></span></span>

<span><span>E(X)=0(.85)+1(.12)+2(.015)+3(.010)+4(.005)=.20</span><span>E(X)=0(.85)+1(.12)+2(.015)+3(.010)+4(.005)=.20</span></span>

The mean number of tattoos per student is .20.

 

Symbols for Population Parameters

Recall from Lesson 3, in a sample, the mean is symbolized by <span><span>x<span>¯¯¯</span></span><span>x¯</span></span> and the standard deviation by <span>ss</span>. Because the probabilities that we are working with here are computed using the population, they are symbolized using lower case Greek letters. The population mean is symbolized by <span>μμ</span> (lower case "mu") and the population standard deviation by <span>σσ</span>(lower case "sigma").

<span><span> Sample StatisticPopulation Parameter</span><span>Mean<span><span>x<span>¯¯¯</span></span><span>x¯</span></span><span>μμ</span></span><span>Variance<span><span>s2</span><span>s2</span></span><span><span>σ2</span><span>σ2</span></span></span><span>Standard Deviation<span>ss</span><span>σσ</span></span></span>

Also recall that the standard deviation is equal to the square root of the variance. Thus, <span><span>σ=<span><span>(<span>σ2</span>)</span><span>−−−−</span>√</span></span><span>σ=<span>(<span>σ2</span>)</span></span></span>

Standard Deviation of a Discrete Random Variable

Knowing the expected value is not the only important characteristic one may want to know about a set of discrete numbers: one may also need to know the spread, or variability, of these data. For instance, you may "expect" to win $20 when playing a particular game (which appears good!), but the spread for this might be from losing $20 to winning $60. Knowing such information can influence you decision on whether to play.

To calculate the standard deviation we first must calculate the variance. From the variance, we take the square root and this provides us the standard deviation. Conceptually, the variance of a discrete random variable is the sum of the difference between each value and the mean times the probility of obtaining that value, as seen in the conceptual formulas below:

Conceptual Formulas

Variance for a Discrete Random Variable

<span><span><span>σ2</span>=∑[(<span>xi</span>−μ<span>)2</span><span>pi</span>]</span><span><span>σ2</span>=∑[(<span>xi</span>−μ<span>)2</span><span>pi</span>]</span></span>

Standard Deviation for a Discrete Random Variable

<span><span>σ=<span><span>∑[(<span>xi</span>−μ<span>)2</span><span>pi</span></span><span>−−−−−−−−−−−</span>√</span>]</span><span>σ=<span>∑[(<span>xi</span>−μ<span>)2</span><span>pi</span></span>]</span></span>

<span><span>xi</span><span>xi</span></span>= value of the i<span>th </span>outcome
<span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span></span>
<span><span>pi</span><span>pi</span></span> = probability of the ith outcome

In these expressions we substitute our result for E(X) into <span>μμ</span> because <span>μμ</span> is the symbol used to represent the mean of a population .

However, there is an easier computational formula. The compuational formula will give you the same result as the conceptual formula above, but the calculations are simplier.

Computational Formulas

Variance for a Discrete Random Variable

<span><span><span>σ2</span>=[∑(<span>x2i</span><span>pi</span>)]−<span>μ2</span></span><span><span>σ2</span>=[∑(<span>xi2</span><span>pi</span>)]−<span>μ2</span></span></span>

Standard Deviation for a Discrete Random Variable

<span><span>σ=<span><span>[∑(<span>x2i</span><span>pi</span>)]−<span>μ2</span></span><span>−−−−−−−−−−−−</span>√</span></span><span>σ=<span>[∑(<span>xi2</span><span>pi</span>)]−<span>μ2</span></span></span></span><span> 
</span>

<span><span>xi</span><span>xi</span></span>= value of the i<span>th </span>outcome
<span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span></span>
<span><span>pi</span><span>pi</span></span> = probability of the ith outcome

Notice in the summation part of this equation that we only square each observed X value and not the respective probability. Also note that the <span>μμ</span> is outside of the summation.

Example

Going back to the first example used above for expectation involving the dice game, we would calculate the standard deviation for this discrete distribution by first calculating the variance:

<span>The Probability Distribution for X = Amount Won or Lost<span><span>X+$2+$1-$1</span><span>Probability1/61/64/6</span></span></span>

<span><span><span>σ2</span>=[∑<span>x2i</span><span>pi</span>]−<span>μ2</span>=[<span>22</span>(<span>16</span>)+<span>12</span>(<span>16</span>)+(−1<span>)2</span>(<span>46</span>)]−(−<span>16</span><span>)2</span></span><span><span>σ2</span>=[∑<span>xi2</span><span>pi</span>]−<span>μ2</span>=[<span>22</span>(<span>16</span>)+<span>12</span>(<span>16</span>)+(−1<span>)2</span>(<span>46</span>)]−(−<span>16</span><span>)2</span></span></span>

<span><span>=[<span>46</span>+<span>16</span>+<span>46</span>]−<span>136</span>=<span>5336</span>=1.472</span><span>=[<span>46</span>+<span>16</span>+<span>46</span>]−<span>136</span>=<span>5336</span>=1.472</span></span>

The variance of this discrete random variable is 1.472.

<span><span>σ=<span><span>(<span>σ2</span>)</span><span>−−−−</span>√</span></span><span>σ=<span>(<span>σ2</span>)</span></span></span>

<span><span>σ=<span>1.472<span>−−−−</span>√</span>=1.213</span><span>σ=1.472=1.213</span></span>

The standard deviation of this discrete random vairable is 1.213. hope this helps

7 0
3 years ago
Read 2 more answers
Does anyone know the answer to number 1, because I need to know ASAP
sdas [7]

The exterior angles of any convex polygon add to 360 degrees.  So for a regular pentagon, the exterior angle is 360/5 = 72 degrees. The interior angle is supplementary to the exterior angle so is 180 - 72 = 108 degrees.  So the sum of them is 5(108) = 540 degrees.

Answer: 540 degrees


5 0
3 years ago
Read 2 more answers
Other questions:
  • Solve for x.<br><br> (5 Questions)
    7·1 answer
  • The joint of meat needs to be cooked for 30 minutes per 500 g plus an extra 20 minutes. How long will it take to cook a joint of
    9·1 answer
  • which complex number has a distance of √17 from the origin on the complex plane?a. 2 15ib. 17 ic. 20 - 3id. 4 - i
    5·1 answer
  • WILL SURELY B THANKED AND MARKED BRAINLIEST
    6·1 answer
  • You can count, use blank or multiply to find the area of a rectangle
    5·1 answer
  • How many four letter passwords can be created if no repetition is allowed?
    13·1 answer
  • Find the distance from N to T.
    6·1 answer
  • Find f^-1(x) for the function f(x)=x/3 F^-1(x)= ?x
    8·1 answer
  • laptop has a listed price of $879.95 before tax. If the sales tax rate is 8.5%, find the total cost of the laptop with sales tax
    10·1 answer
  • Write 41. 287 to 1 decimal place​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!