1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shalnov [3]
2 years ago
11

Anyone have the answer for this

Mathematics
1 answer:
sergiy2304 [10]2 years ago
7 0

\huge\bold{Given:}

Length of the base = 16 km.

Length of the hypotenuse = 34 km. \huge\bold{To\:find:}

✎ The length of the missing leg ''a".

\large\mathfrak{{\pmb{\underline{\orange{Solution}}{\orange{:}}}}}

The length of the missing leg "a" is\boxed{30\:km}.

\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\orange{:}}}}}

Using Pythagoras theorem, we have

({perpendicular})^{2}  +  ({base})^{2}  =  ({hypotenuse})^{2}  \\ ⇢ {a}^{2}  +  ({16 \: km})^{2}  =  ({34 \: km})^{2}  \\ ⇢ {a}^{2}   + 256 \:  {km}^{2}  = 1156 \:  {km}^{2}  \\ ⇢ {a}^{2}  = 1156 \:  {km}^{2}  - 256 \:  {km}^{2}  \\ ⇢ {a}^{2}  = 900 \:  {km}^{2}  \\ ⇢a \:  =  \sqrt{900  \: {km}^{2} }  \\ ⇢a =  \sqrt{30 \times 30 \:  {km}^{2} }  \\ ⇢a = 30 \: km

\sf\blue{Therefore,\:the\:length\:of\:the\:missing\:leg\:"a"\:is\:30\:km.}

\huge\bold{To\:verify :}

( {30 \: km})^{2}  +  ({16 \: km})^{2}  =(  {34 \: km})^{2}  \\ ⇝900 \:  {km}^{2}  + 256 \:  {km}^{2}  = 1156 \:  {km}^{2}  \\⇝1156 \:  {km}^{2}  = 1156 \:  {km}^{2}   \\ ⇝L.H.S.=R. H. S

Hence verified. ✔

\circ \: \: { \underline{ \boxed{ \sf{ \color{green}{Happy\:learning.}}}}}∘

You might be interested in
A beacon is flashing on top of a 50 foot tower. A 6 foot tall man walks constantly away from the tower at 5 feet/sec. At the ins
Viefleur [7K]

Answer:\frac{253}{44}

Step-by-step explanation:

ignore the "at the instant the man is 30 feet away" part, set it as X and the man's shadow as Y.

Similar triangles so we can do \frac{50}{x+y}  = \frac{6}{y}.

Solve for it we get 44y = 6x

Differentiate relative to time t, we get 44y' = 6x'.

change in x (x') is equal to 5. And we get the answer y' = \frac{33}{44}.

the \frac{33}{44} ft/sec is the rate of which the length of the shadow is changing. add 5 to it for the rate of the tip of his shadow moving away from the tower.

7 0
2 years ago
I will give 50 points and brainliest ​
Kay [80]

Answer:

27.2mm²

Step-by-step explanation:

Area of a triangle = \frac{1}{2} * base * height

Base of this triangle = 8mm

Height = 6.8mm

Area = \frac{1}{2} * 8mm * 6.8mm

       = 4mm * 6.8mm

       = 27.2mm²

6 0
3 years ago
Read 2 more answers
Does this table represent a linear function?
IRINA_888 [86]
I think yes because the number are not all the same
5 0
3 years ago
Find the laplace transform of f(t) = cosh kt = (e kt + e −kt)/2
iren2701 [21]
Hello there, hope I can help!

I assume you mean L\left\{\frac{ekt+e-kt}{2}\right\}
With that, let's begin

\frac{ekt+e-kt}{2}=\frac{ekt}{2}+\frac{e}{2}-\frac{kt}{2} \ \textgreater \  L\left\{\frac{ekt}{2}-\frac{kt}{2}+\frac{e}{2}\right\}

\mathrm{Use\:the\:linearity\:property\:of\:Laplace\:Transform}
\mathrm{For\:functions\:}f\left(t\right),\:g\left(t\right)\mathrm{\:and\:constants\:}a,\:b
L\left\{a\cdot f\left(t\right)+b\cdot g\left(t\right)\right\}=a\cdot L\left\{f\left(t\right)\right\}+b\cdot L\left\{g\left(t\right)\right\}
\frac{ek}{2}L\left\{t\right\}+L\left\{\frac{e}{2}\right\}-\frac{k}{2}L\left\{t\right\}

L\left\{t\right\} \ \textgreater \  \mathrm{Use\:Laplace\:Transform\:table}: \:L\left\{t\right\}=\frac{1}{s^2} \ \textgreater \  L\left\{t\right\}=\frac{1}{s^2}

L\left\{\frac{e}{2}\right\} \ \textgreater \  \mathrm{Use\:Laplace\:Transform\:table}: \:L\left\{a\right\}=\frac{a}{s} \ \textgreater \  L\left\{\frac{e}{2}\right\}=\frac{\frac{e}{2}}{s} \ \textgreater \  \frac{e}{2s}

\frac{ek}{2}\cdot \frac{1}{s^2}+\frac{e}{2s}-\frac{k}{2}\cdot \frac{1}{s^2}

\frac{ek}{2}\cdot \frac{1}{s^2}  \ \textgreater \  \mathrm{Multiply\:fractions}: \frac{a}{b}\cdot \frac{c}{d}=\frac{a\:\cdot \:c}{b\:\cdot \:d} \ \textgreater \  \frac{ek\cdot \:1}{2s^2} \ \textgreater \  \mathrm{Apply\:rule}\:1\cdot \:a=a
\frac{ek}{2s^2}

\frac{k}{2}\cdot \frac{1}{s^2} \ \textgreater \  \mathrm{Multiply\:fractions}: \frac{a}{b}\cdot \frac{c}{d}=\frac{a\:\cdot \:c}{b\:\cdot \:d} \ \textgreater \  \frac{k\cdot \:1}{2s^2} \ \textgreater \  \mathrm{Apply\:rule}\:1\cdot \:a=a
\frac{k}{2s^2}

\frac{ek}{2s^2}+\frac{e}{2s}-\frac{k}{2s^2}

Hope this helps!
3 0
3 years ago
What is 72cm as inches
Andrew [12]

Answer:

72 cm is equivalent to 28,3464566929 inches.

5 0
3 years ago
Read 2 more answers
Other questions:
  • What are the steps to linear equations
    13·1 answer
  • PLEASE HELP The graph of function g is a vertical stretch of the graph of function f ​​by a factor of 10.
    14·1 answer
  • This??? What is wrong with it?
    9·1 answer
  • Give me give me keyboard on this phone please provide nice I can't type where is the keyboard
    14·2 answers
  • Solve the equation. Round your answer to the nearest hundredth.<br> 47 +3.81k = -41
    15·1 answer
  • Find the diagonal of a television screen 30 inches wide by 35 inches tall.
    5·1 answer
  • Solve simultaneous equation by substitution method<br> y-4x=6<br> 2y-3x=4
    11·1 answer
  • Complete the ratio table to convert the units of time from hours to weeks or weeks to hours PLEASEE HELP I WILL MARK U BRAINLIES
    15·2 answers
  • A proportion is shown. 24/x= 3/0.5 What is the value of x?
    8·1 answer
  • Evacuate the following using suitable identities (102)^3
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!