Answer:
Angle BC, because 70+20 = 90
Step-by-step explanation:
3 3/8 - 1 1/5 = 3-1 + 3/8 - 1/5 = 2 + (15-8)/40 = 2 + 7/40 = 2 7/40
L=Lim tan(x)^2/x x->0
Since both numerator and denominator evaluate to zero, we could apply l'Hôpital rule by taking derivatives.
d(tan^2(x))/dx=2tan(x).d(tan(x))/dx = 2tan(x)sec^2(x)
d(x)/dx = 1
=>
L=2tan(x)sec^2(x)/1 x->0
= (2(0)/1^2)/1
=0/1
=0
Another way using series,
We know that tan(x) = x+x^3/3+2x^5/15+.....
then tan^2(x), using binomial expansion gives
x^2+2*x^4/3+.... (we only need two terms)
and again apply l'Hôpital's rule, we have
L=d(x^2+2x^4/3+...)/d(x) = (2x+8x^3/3+...)/1
=0 as x->0
Answer:
54m
Step-by-step explanation:
Hope I helped!
The coordinates of the vertex that A maps to after Daniel's reflections are (3, 4) and the coordinates of the vertex that A maps to after Zachary's reflections are (3, 2)
<h3>How to determine the coordinates of the vertex that A maps to after the two reflections?</h3>
From the given figure, the coordinate of the vertex A is represented as:
A = (-5, 2)
<u>The coordinates of the vertex that A maps to after Daniel's reflections</u>
The rule of reflection across the line x = -1 is
(x, y) ⇒ (-x - 2, y)
So, we have:
A' = (5 - 2, 2)
Evaluate the difference
A' = (3, 2)
The rule of reflection across the line y = 2 is
(x, y) ⇒ (x, -y + 4)
So, we have:
A'' = (3, -2 + 4)
Evaluate the difference
A'' = (3, 4)
Hence, the coordinates of the vertex that A maps to after Daniel's reflections are (3, 4)
<u>The coordinates of the vertex that A maps to after Zachary's reflections</u>
The rule of reflection across the line y = 2 is
(x, y) ⇒ (x, -y + 4)
So, we have:
A' = (-5, -2 + 4)
Evaluate the difference
A' = (-5, 2)
The rule of reflection across the line x = -1 is
(x, y) ⇒ (-x - 2, y)
So, we have:
A'' = (5 - 2, 2)
Evaluate the difference
A'' = (3, 2)
Hence, the coordinates of the vertex that A maps to after Zachary's reflections are (3, 2)
Read more about reflection at:
brainly.com/question/4289712
#SPJ1