1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kramer
3 years ago
9

Can someone help with this question please

Mathematics
1 answer:
nirvana33 [79]3 years ago
6 0

4×4=16


(8×4)4=128


(7×4)÷2=14

14×4=56


16+128+56=200


Ans: 200

You might be interested in
I need the answer and explain please and thank you.
Dafna11 [192]
Use cos sin and tan and looks up rules of cos sin tan and it will show you the rules and use those methods to plug into your equation
6 0
3 years ago
Read 2 more answers
Help me with this one
Artist 52 [7]

9514 1404 393

Answer:

  "complete the square" to put in vertex form

Step-by-step explanation:

It may be helpful to consider the square of a binomial:

  (x +a)² = x² +2ax +a²

The expression x² +x +1 is in the standard form of the expression on the right above. Comparing the coefficients of x, we see ...

  2a = 1

  a = 1/2

That means we can write ...

  (x +1/2)² = x² +x +1/4

But we need x² +x +1, so we need to add 3/4 to the binomial square in order to make the expressions equal:

  x^2+x+1\\\\=(x^2+x+\frac{1}{4})+\frac{3}{4}\\\\=(x+\frac{1}{2})^2+\frac{3}{4}

_____

Another way to consider this is ...

  x² +bx +c

  = x² +2(b/2)x +(b/2)² +c -(b/2)² . . . . . . rewrite bx, add and subtract (b/2)²*

  = (x +b/2)² +(c -(b/2)²)

for b=1, c=1, this becomes ...

  x² +x +1 = (x +1/2)² +(1 -(1/2)²)

  = (x +1/2)² +3/4

_____

* This process, "rewrite bx, add and subtract (b/2)²," is called "completing the square"—especially when written as (x-h)² +k, a parabola with vertex (h, k).

5 0
2 years ago
Someone pls help me with this question ​
Degger [83]

Answer:

volume=0.000064m^{3}

mass=0.5888kg

Step-by-step explanation:

4 0
2 years ago
Help I cannot figure this question out.
netineya [11]

Answer:

B. x = -1 ± i

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Standard Form: ax² + bx + c = 0
  • Factoring
  • Quadratic Formula: \displaystyle x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}

<u>Algebra II</u>

  • Imaginary Numbers: √-1 = i

Step-by-step explanation:

<u>Step 1: Define</u>

x² + 2x = -2

<u>Step 2: Identify Variables</u>

  1. Rewrite Quadratic in Standard Form [Addition Property of Equality]:        x² + 2x + 2 = 0
  2. Break up Quadratic:                                                                                        a = 1, b = 2, c = 2

<u>Step 3: Solve for </u><em><u>x</u></em>

  1. Substitute in variables [Quadratic Formula]:                                                \displaystyle x=\frac{-2 \pm \sqrt{2^2-4(1)(2)}}{2(1)}
  2. [√Radical] Evaluate exponents:                                                                     \displaystyle x=\frac{-2 \pm \sqrt{4-4(1)(2)}}{2(1)}
  3. Multiply:                                                                                                           \displaystyle x=\frac{-2 \pm \sqrt{4-8}}{2}
  4. [√Radical] Subtract:                                                                                        \displaystyle x=\frac{-2 \pm \sqrt{-4}}{2}
  5. [√Radical] Factor:                                                                                        \displaystyle x=\frac{-2 \pm \sqrt{-1}\sqrt{4}}{2}
  6. [√Radicals] Simplify:                                                                                       \displaystyle x=\frac{-2 \pm 2i}{2}
  7. Factor:                                                                                                             \displaystyle x=\frac{2(-1 \pm i)}{2}
  8. Divide:                                                                                                             \displaystyle x = -1 \pm i
3 0
3 years ago
Solve 50q-43=52q-81
ladessa [460]
Move the variables to one side and the constants to the other

50q - 43 = 52q - 81

50q (-52q) - 43 (+43) = 52q (-52q) - 81 (+43)

50q - 52q = -81 + 43

-2q = -38

isolate the q, divide -2 from both sides

-2q/-2 = -38/-2

q = -38/-2

q = 19

hope this helps
8 0
3 years ago
Read 2 more answers
Other questions:
  • Can you help me solve for n n/-4+-21=13
    13·1 answer
  • One-half the sum of a number and four is three less than the quotient of five and the number..
    6·1 answer
  • Kyah and Jasmine are running in a long distance race. They are running around a track that is 1/5 of km long. Kyah can run 6 lap
    13·1 answer
  • 1cm is equal to how much kilometers
    12·1 answer
  • 435 L = ______ KL So what do i put in the blank spot ?? i dont know how to do this
    14·2 answers
  • PLEASE HELPPPP I NEED THIS FASTTTTT
    13·1 answer
  • A garment shop earns a profit of ₹100 on every shirt and loss ₹50 on every sale of half pant. (1) The shop sells in a month 50 h
    9·1 answer
  • T is directly proportional to x2. If T=36 and x=3 find the value of t when x = 5
    12·1 answer
  • Elana runs for 28 seconds and finishes at 250 meters .what is her velocity
    7·1 answer
  • to convert measurements in the metric system you can move the decimal point left or right why does this work?​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!