1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ivann1987 [24]
3 years ago
15

Help me please I'm really confused

Mathematics
1 answer:
Vanyuwa [196]3 years ago
4 0
The answer is (a).  hopefully this answers your question
You might be interested in
23 points please help simplify the square root sqrt (32x^2) if x>=0
dexar [7]

Answer:

4√2x.

Step-by-step explanation:

√32 = √2*√16 = 4√2.

√x^2 = x.

3 0
2 years ago
Which of the following expressions represents the distance between -13 and -4 on a number line
lesya692 [45]

Answer:

<h2>a) |-13 - (-4)|</h2>

Step-by-step explanation:

The formula of a distance between two points (numbers) A and B on the number line:

d = |B - A| = |A - B|

We have A = -13 and B = -4. Substitute:

d = |-13 - (-4)|

6 0
3 years ago
Complete the equation of the line through (−8,8), and (1,-10 ). Use exact numbers. Help me please my dog just died and I want to
katrin2010 [14]

Answer: (Mayadc821 wrote this anwser check theyre account for more)

Since you know the x and y values, you just have to plug these into the linear slope-intercept equation:

y = mx + b

-10 = m(1) + b

m + b = -10

b = -10 - m

Now that we have a value for b, we can plug this into the other equation:

8 = m(-8) + b

8 = -8m + (-10 - m)

8 = -9m -10

18 = -9m

m = -2

Now that we know what m is equal to, we can plug this into our first equation to get an answer for b:

b = -10 - m

b = -10 -(-2)

b = -10 + 2

b = -8

Our final equation is y = -2x - 8

6 0
3 years ago
Find a solution of x dy dx = y2 − y that passes through the indicated points. (a) (0, 1) y = (b) (0, 0) y = (c) 1 6 , 1 6 y = (d
Leni [432]
Answers: 

(a) y = \frac{1}{1 - Cx}, for any constant C

(b) Solution does not exist

(c) y = \frac{256}{256 - 15x}

(d) y = \frac{64}{64 - 15x}

Explanations:

(a) To solve the differential equation in the problem, we need to manipulate the equation such that the expression that involves y is on the left side of the equation and the expression that involves x is on the right side equation.

Note that

 x\frac{dy}{dx} = y^2 - y&#10;\\&#10;\\ \indent xdy = \left ( y^2 - y \right )dx&#10;\\&#10;\\ \indent \frac{dy}{y^2 - y} = \frac{dx}{x}&#10;\\&#10;\\ \indent \int {\frac{dy}{y^2 - y}} = \int {\frac{dx}{x}} &#10;\\&#10;\\ \indent \boxed{\int {\frac{dy}{y^2 - y}} = \ln x + C_1}      (1)

Now, we need to evaluate the indefinite integral on the left side of equation (1). Note that the denominator y² - y = y(y - 1). So, the denominator can be written as product of two polynomials. In this case, we can solve the indefinite integral using partial fractions.

Using partial fractions:

\frac{1}{y^2 - y} = \frac{1}{y(y - 1)} = \frac{A}{y - 1} + \frac{B}{y}&#10;\\&#10;\\ \indent \Rightarrow \frac{1}{y^2 - y} = \frac{Ay + B(y-1)}{y(y - 1)} &#10;\\&#10;\\ \indent \Rightarrow \boxed{\frac{1}{y^2 - y} = \frac{(A+B)y - B}{y^2 - y} }      (2)

Since equation (2) has the same denominator, the numerator has to be equal. So,

1 = (A+B)y - B&#10;\\&#10;\\ \indent \Rightarrow (A+B)y - B = 0y + 1&#10;\\&#10;\\ \indent \Rightarrow \begin{cases}&#10; A + B = 0&#10;& \text{(3)}\\-B = 1&#10; & \text{(4)}   \end{cases}

Based on equation (4), B = -1. By replacing this value to equation (3), we have

A + B = 0
A + (-1) = 0
A + (-1) + 1 = 0 + 1
A = 1 

Hence, 

\frac{1}{y^2 - y} = \frac{1}{y - 1} - \frac{1}{y}

So,

\int {\frac{dy}{y^2 - y}} = \int {\frac{dy}{y - 1}} - \int {\frac{dy}{y}} &#10;\\&#10;\\ \indent \indent \indent \indent = \ln (y-1) - \ln y&#10;\\&#10;\\ \indent  \boxed{\int {\frac{dy}{y^2 - y}} = \ln \left ( \frac{y-1}{y} \right ) + C_2}

Now, equation (1) becomes

\ln \left ( \frac{y-1}{y} \right ) + C_2 = \ln x + C_1&#10;\\&#10;\\ \indent \ln \left ( \frac{y-1}{y} \right ) = \ln x + C_1 - C_2&#10;\\&#10;\\ \indent  \frac{y-1}{y} = e^{C_1 - C_2}x&#10;\\&#10;\\ \indent  \frac{y-1}{y} = Cx, \text{ where } C = e^{C_1 - C_2}&#10;\\&#10;\\ \indent  1 - \frac{1}{y} = Cx&#10;\\&#10;\\ \indent \frac{1}{y} = 1 - Cx&#10;\\&#10;\\ \indent \boxed{y = \frac{1}{1 - Cx}}&#10;       (5)

At point (0, 1), x = 0, y = 1. Replacing these values in (5), we have

y = \frac{1}{1 - Cx}&#10;\\&#10;\\ \indent 1 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1&#10;&#10;

Hence, for any constant C, the following solution will pass thru (0, 1):

\boxed{y = \frac{1}{1 - Cx}}

(b) Using equation (5) in problem (a),

y = \frac{1}{1 - Cx}   (6)

for any constant C.

Note that equation (6) is called the general solution. So, we just replace values of x and y in the equation and solve for constant C.

At point (0,0), x = 0, y =0. Then, we replace these values in equation (6) so that 

y = \frac{1}{1 - Cx}&#10;\\&#10;\\ \indent 0 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1

Note that 0 = 1 is false. Hence, for any constant C, the solution that passes thru (0,0) does not exist.

(c) We use equation (6) in problem (b) and because equation (6) is the general solution, we just need to plug in the value of x and y to the equation and solve for constant C. 

At point (16, 16), x = 16, y = 16 and by replacing these values to the general solution, we have

y = \frac{1}{1 - Cx}&#10;\\&#10;\\ \indent 16 = \frac{1}{1 - C(16)} &#10;\\ &#10;\\ \indent 16 = \frac{1}{1 - 16C}&#10;\\&#10;\\ \indent 16(1 - 16C) = 1&#10;\\ \indent 16 - 256C = 1&#10;\\ \indent - 256C = -15&#10;\\ \indent \boxed{C = \frac{15}{256}}&#10;&#10;&#10;

By replacing this value of C, the general solution becomes

y = \frac{1}{1 - Cx}&#10;\\&#10;\\ \indent y = \frac{1}{1 - \frac{15}{256}x} &#10;\\ &#10;\\ \indent y = \frac{1}{\frac{256 - 15x}{256}}&#10;\\&#10;\\&#10;\\ \indent \boxed{y = \frac{256}{256 - 15x}}&#10;&#10;&#10;&#10;

This solution passes thru (16,16).

(d) We do the following steps that we did in problem (c):
        - Substitute the values of x and y to the general solution.
        - Solve for constant C

At point (4, 16), x = 4, y = 16. First, we replace x and y using these values so that 

y = \frac{1}{1 - Cx} &#10;\\ &#10;\\ \indent 16 = \frac{1}{1 - C(4)} &#10;\\ &#10;\\ \indent 16 = \frac{1}{1 - 4C} &#10;\\ &#10;\\ \indent 16(1 - 4C) = 1 &#10;\\ \indent 16 - 64C = 1 &#10;\\ \indent - 64C = -15 &#10;\\ \indent \boxed{C = \frac{15}{64}}

Now, we replace C using the derived value in the general solution. Then,

y = \frac{1}{1 - Cx} \\ \\ \indent y = \frac{1}{1 - \frac{15}{64}x} \\ \\ \indent y = \frac{1}{\frac{64 - 15x}{64}} \\ \\ \\ \indent \boxed{y = \frac{64}{64 - 15x}}
5 0
3 years ago
Skye says that x^3 – a^3 = (x – a)(x^2 + ax + a^2) is a polynomial identity because when she substitutes 2 in for x and 3 in for
Nady [450]

Answer:  x^3 - a^3 = (x - a) (x^2 + ax + a^2) is an identity

Step-by-step explanation:

Verify the identity using trig rules.

5 0
3 years ago
Other questions:
  • The area of a square can be found using the equation A = s², where A is the area and s is the measure of one side of the square.
    13·2 answers
  • Please help me with this question:)
    11·1 answer
  • Sam delivers 167 newspapers every morning, he receives 5 cents per paper seven day a week, what is his weekly pay
    12·2 answers
  • Enter the missing values in the area model to find 8(8k + 9)
    13·2 answers
  • A city received 2 inches of rain each day for 3 days. the meteorologist said that if the rain had been snow, each inch of rain w
    8·1 answer
  • The Crayola crayon company can make 2400 crayons in 4 minutes. How many crayons can they make in 15 minutes? Solve this problem
    15·1 answer
  • Find value of x in a hexagon with 2x,3x and x
    15·1 answer
  • Find the Domain of the following exponential and logarithmic equations and solve them:
    8·1 answer
  • For Anya's birthday her father gave out colorful birthday hats that were
    11·1 answer
  • Christian conducted a survey to find the favorite hobby of her classmates from 4 choices. He surveyed the same number of girls a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!