If the two shortest sides of the triangle are 10in and 24in, then using Pythagoras' theorem, the longest side =
=

=

Now we know the two longest sides of the first triangle (24in and 26in) we can compare them with the two longest sides of the second triangle.
If

= the scale factor the first triangle is enlarged by then

and
⇒

Finally, we need to multiply the smallest side of the first triangle by the scale factor to find the shortest side of the second triangle.

So the length of the shortest side of the other triangle is 15in.
You could, instead, calculate the length of the shortest side of the second triangle by using Pythagoras' theorem and ignoring the first triangle completely.
The answer to your question is 4 minutes
40 I believe because the space of the auto mobile catching up to the train is 4 hours. 4 times 30 is 120 miles so u need to figure out a number that can reach 120 in three hours. 3 times 40 is 120
Answer:
Step-by-step explanation:
%change=100(final-initial)/(initial)
%change=100(40-32)/32
%change=25%
To solve this problem, all we need to do is just set up a proportion. The two shapes are similar, which means that they are the same shape, but different sizes. Using the wording/letter arrangement in the problem, we can figure out which side of one triangle corresponds to which side of the other triangle.
Triangle LMV (with segments LM, MV, and VL) is similar to triangle UTK (with segments UT, TK, and KU).
Corresponding pairs:
LM(x) : UT(39)
MV(30) : TK(65)
VL : KU
However, we need only be interested in the first two pairs. Here is the proportion with letters:
LM / UT = MV / TK
and as numbers:
x / 39 = 30 / 65
Solve for x:
x / 39 = 30 / 65
Cross multiply:
(x)(65) = (39)(30)
Simplify:
65x = 1170
Divide:
65x/65 = 1170 / 65
Simplify:
x = 18
<h2>Answer:</h2>
The length of side LM (x) in triangle LMV is 18 units.