This is the concept of algebra, given that ab^4=12 and a^5b^5=7776, the value if a will be found as follows:
ab^4=12
a=12/b^4
also;
a^5=7776/b^5
thus;
a=(7776/b^5)^(1/5)
a=6/b
thus the value of a will be:
6/b=12/b^4
dividing both sides by b we get:
6=12/b^3
multiplying both sides by b^3 we get
6b^3=12
b^3=2
hence;
b=2^(1/3)
Answer:
a) 99.97%
b) 65%
Step-by-step explanation:
• 68% of data falls within 1 standard deviation from the mean - that means between μ - σ and μ + σ.
• 95% of data falls within 2 standard deviations from the mean - between μ – 2σ and μ + 2σ.
• 99.7% of data falls within 3 standard deviations from the mean - between μ - 3σ and μ + 3σ.
Mean of 98.35°F and a standard deviation of 0.64°F.
a. What is the approximate percentage of healthy adults with body temperatures within 3 standard deviations of the mean, or between 96.43°F and 100.27°F?
μ - 3σ
98.35 - 3(0.64)
= 96.43°F
μ + 3σ.
98.35 + 3(0.64)
= 100.27°F
The approximate percentage of healthy adults with body temperatures is 99.97%
b. What is the approximate percentage of healthy adults with body temperatures between 97 .71°F and 98.99°F?
within 1 standard deviation from the mean - that means between μ - σ and μ + σ.
μ - σ
98.35 - (0.64)
= 97.71°F
μ + σ.
98.35 + (0.64)
= 98.99°F
Therefore, the approximate percentage of healthy adults with body temperatures between 97.71°F and 98.99°F is 65%
Shee needs 448 ounces of lemonade.
448 ÷ 80 =5.8
⇒ There are 5.6 80-ounce of lemonade.
80 ounces of lemonade needed 8 lemons.
448 ounces of lemonade needed 8 x 5.6 = 44.8 lemons.
Tanisha has 38 lemons.
She does not have enough lemons.
She needs 44.8 - 38 = 7 more lemons.
Answer: <span>Tanisha needs more lemons. She needs 7 more.</span>
The point where the lines intersect is (0, 0)
The best answer out of the ones provided would be c, confidence interval