Answer:
See below
Step-by-step explanation:
![\sqrt[3]{49} = 3.65930571002 \approx3.66 \\ \\ so \: \sqrt[3]{49} should \: lie \: at \: 3.6 \: which \: \\ fall \: between \: 3 \: and \: 4.](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B49%7D%20%20%3D%203.65930571002%20%5Capprox3.66%20%5C%5C%20%20%5C%5C%20so%20%5C%3A%20%20%5Csqrt%5B3%5D%7B49%7D%20should%20%5C%3A%20lie%20%5C%3A%20at%20%5C%3A%203.6%20%5C%3A%20which%20%5C%3A%20%20%5C%5C%20fall%20%5C%3A%20between%20%5C%3A%203%20%5C%3A%20and%20%5C%3A%204.)
Actually Lin did a mistake, she obtained square root and not cube root.
Answer:
<u>Recursive:</u>

<u>Explicit:</u>

Explanation:
<u>1. Sequence:</u>

<u>2. Recursive formula</u>
The recursive formula permits to calculate the value of the nth term in the sequence using the (n-1)th term in the sequence.

<u>3. Explicit formula</u>
The explicit formula permits to calculate any value of a term in the sequence:

First, simplify the equation 3X-8X is -5X. So 24=16+-5X. Then subtract 16 from both sides. So you get 8=-5X. Then divide by -5.
So X= -8/5